Harvest Four Corners, LLC Permit No. R6FOP-NM-04-R3-2023

ATTACHMENT 4

February 4, 2022

Air Permits Section, 6MM-AP U.S. EPA, Region 6 1445 Ross Avenue Dallas, Texas 752002-2733

Re: Application to Renew Title V Operating Permit Number R6FOP-NM-04-R2 Harvest Four Corners, LLC – Los Mestenios Compressor Station

Dear Madam/Sir,

On behalf of Harvest Four Corners, LLC (Harvest), Cirrus Consulting, LLC submits the enclosed application to renew the Title V operating permit for the Los Mestenios Compressor Station, located within the exterior boundaries of the Jicarilla Apache Indian Reservation.

Thank you for your assistance. If you have questions or need any additional information, please contact Oakley Hayes of Harvest at (505) 632-4421.

Sincerely,

CIRRUS CONSULTING, LLC

ames W. Newby

James W. Newby

Attachment

Los Mestenios Compressor Station Title V Operating Permit Renewal Application

c: Oakley Hayes, Harvest

This Page Intentionally Left Blank

U.S ENVIRONMENTAL PROTECTION AGENCY (REGION 6) RENEWAL APPLICATION FOR PERMIT # R6FOP-NM-04-R2

LOS MESTENIOS COMPRESSOR STATION

Submitted By:

HARVEST FOUR CORNERS, LLC 1755 Arroyo Drive Bloomfield, New Mexico 87413

Prepared By:

CIRRUS CONSULTING, LLC 11139 Crisp Air Drive Colorado Springs, Colorado 80908 (801) 294-3024

February 2022

This Page Intentionally Left Blank

Table of Contents

Introduction

Section 1: Application Forms

- Form GIS: General Information and Summary
- Form EUD-1 Emission Unit Description for Fuel Combustion Sources (Unit 1)
- Form EUD-1 Emission Unit Description for Fuel Combustion Sources (Unit 2)
- Form EUD-1 Emission Unit Description for Fuel Combustion Sources (Unit 3)
- Form EUD-2: Emissions Unit Description for VOC Emitting Sources (Unit T1)
- Form EUD-2: Emissions Unit Description for VOC Emitting Sources (Unit T2)
- Form EUD-2: Emissions Unit Description for VOC Emitting Sources (Unit F1)
- Form EUD-2: Emissions Unit Description for VOC Emitting Sources (Unit SSM)
- Form IE: Insignificant Emissions
- Form EMISS: Emission Calculations (Unit 1)
- Form EMISS: Emission Calculations (Unit 2)
- Form EMISS: Emission Calculations (Unit 3)
- Form EMISS: Emission Calculations (Unit T1)
- Form EMISS: Emission Calculations (Unit T2)
- Form EMISS: Emission Calculations (Unit F1)
- Form EMISS: Emission Calculations (Unit SSM)
- Form PTE: Potential to Emit
- Form CTAC Certification of Truth, Accuracy and Completeness by Responsible Official
- Section 2: Facility Plot Plan and Topographic Map
- Section 3: Emissions Calculations and Documentation
- Section 4: Federal Regulations Applicability

This Page Intentionally Left Blank

Introduction

The Harvest Four Corners, LLC (Harvest) Los Mestenios Compressor Station currently operates under Part 71 Title V permit R6FOP-NM-04-R2, issued August 8, 2017. This application is being submitted to renew the Title V permit.

The Los Mestenios Compressor Station is a natural gas compressor station that accepts produced natural gas gathered from various wellheads from the gas field surrounding the facility, and compresses this gas for delivery to natural gas processing facilities. This is done on a contractual basis.

Under the existing Title V operating permit, the station is currently approved to operate a Solar Saturn T1200 natural gas fired turbine (Unit 1) and a Caterpillar G-399-TA 4 stroke rich burn (4SRB) reciprocating internal combustion engine (RICE) (Unit 2), both driving natural gas compressors. The existing permit also includes a 490-bbl condensate storage tank (Unit T1) for which both flash and working/breathing losses are estimated, a 400-bbl condensate tank (Unit T2) with working/breathing losses only, fugitive emissions from valves, flanges, etc. (Unit F1), startup, shutdown, and maintenance emissions (Unit SSM) and miscellaneous insignificant emission sources. Note that T2 is permitted to prevent overflows from T1 during times when haul truck access is limited due to outside factors such as weather and/or road conditions, and as such does not include flash losses.

In addition to renewing the Part 71 Title V permit, this application proposes to replace Unit 2, with a Waukesha L7042GL compressor engine and add one Scania DS11 diesel emergency generator (Unit 3). Note that the caterpillar engine is no longer operational and has been disconnected from the process.

The emergency generator was installed during the latter half of calendar year 2019; however, Harvest has not been able to find records indicating EPA was notified of startup. That being the case, this application is being used to provide notice of installation and startup.

On January 21, 2022, a letter was submitted to EPA Region 6 indicating that emissions at the Los Mestenios Compressor Station have dropped below the Title V major source thresholds. This occurred both because of the replacement of the Caterpillar G-399-TA engine, a Title V major source by itself, and because flash emissions from the condensate storage tank have been reduced. The emission rates identified in this application are below the Title V major source thresholds.

This renewal application is being submitted because EPA has not had a chance to review and approve the January 21, 2022 letter.

This Page Intentionally Left Blank

Section 1

Application Forms

Federal Operating Permit Program (40 CFR Part 71) GENERAL INFORMATION AND SUMMARY (GIS)

A. Mailing Address and Contact Information

Facility name: <u>Los Mestenios Compressor Station</u>

Mailing address: Street or P.O. Box _1755 Arroyo Drive ____

City: Bloomfield

Contact person: <u>Oakley Hayes</u> Title <u>Environmental Specialist</u>

State: <u>NM</u> ZIP: <u>87413</u> -

Telephone: _(505) 632-4421_ Ext. _____

Facsimile: (505) 632-4782 Ext.

B. Facility Location

Temporary source?Yes _X_No Plant site location <u>Section 2 5& 26, Township 26N, Range 5W</u> (UTMH 292.3 km, UTMV 4,036.5 km, Zone 13)
City: _≈24 miles northwest of Gavilan State: _NM County: _Rio Arriba EPA Region: _6
Is the facility located within:
Indian lands? X YES NO An offshore source in federal waters? YES X NO
Non-attainment area? YES <u>X</u> NO If yes, for what air pollutants? <u>N/A</u>
Within 50 miles of affected State? X_YESNO If yes, what state(s)? <u>CO</u>

C. Owner

Name: <u>Hilcorp Energy Company</u> City: <u>Houston</u> Telephone: <u>(713) 289 - 2630</u> Ext:	Street/P.O. Box: <u>1111 Travis Street</u> State: <u>TX</u> ZIP: <u>77002 -</u>
. Operator	
Name: <u>Harvest Four Corners, LLC</u>	Street/P.O. Box: <u>1755 Arroyo Drive</u>
City: <u>Bloomfield</u>	State: <u>NM</u> ZIP: <u>87413</u>
Telephone: <u>(505) 632 - 4600</u> Ext:	

E. /	٩рр	licatio	n Type
------	-----	---------	--------

Mark only one permit application type and answer the supplementary question appropriate for the type marked.
Initial Permit <u>X</u> Renewal Significant Mod Minor Permit Mod(MPM)
Group Processing, MPM Administrative Amendment
For initial permits, when did operations commence?//
For permit renewal, what is the expiration date of current permit? <u>08 / 07 / 2022</u>

F. Applicable Requirement Summary

Mark the types of applicab	le requirements that apply:		
SIP	<u>X</u> FIP/TIP	PSD	Non-attainment NSR
Minor source NSR	X_Section 111	Phase I acid rain	Phase II acid rain
Stratospheric ozone	OCS regulations	NESHAP	Sec. 112(d) MACT
<u>X</u> Sec. 112(g) MACT	Early reduction of HAP	Sec 112(j) MACT _	RMP [Sec.112(r)]
Section 129	NAAQS, increments or v	visibility but for temporary	sources (This is rare)
Is the source subject to the	e Deepwater Port Act? YES	8 <u>X</u> NO	
Has a risk management pl	an been registered? YES _	X NO Agency:	
Phase II acid rain applicati	on submitted? YES <u>_X_</u> No	O If YES, Permitting Au	thority:

G. Source-Wide PTE Restrictions and Generic Applicable Requirements

Cite and describe any emissions-limiting requirements and/or facility-wide "generic" applicable requirements.

Not applicable.	

H. Process Description

List processes, products, and SIC codes for the facility.

Process	Products	SIC
Natural Gas Compression	Natural Gas	1389
Condensate Storage	Natural Gas Condensate	1389

I. Emission Unit Identification

Assign an emissions unit ID and describe each emissions unit at the facility. Control equipment and/or alternative operating scenarios associated with emissions units should by listed on a separate line. Applicants may exclude from this list any insignificant emissions units or activities.

Emissions Unit ID	Description of Unit
1	Solar Saturn 1200 Turbine
2	Waukesha L7042GL Engine
3	Scania DS11 Diesel Engine
T1	490 bbl Condensate Storage Tank
T2	400 bbl Condensate Storage Tank
F1	Piping Component Fugitive Emissions
SSM	Startup, Shutdown & Maintenance

J. Facility Emissions Summary

Enter potential to emit (PTE) for the facility as a whole for each regulated air pollutant listed below. Enter the name of the single HAP emitted in the greatest amount and its PTE. For all pollutants, stipulations to major source status may be indicated by entering "major" in the space for PTE. Indicate the total actual emissions for fee purposes for the facility in the space provided. Applications for permit modifications need not include actual emissions information.

4

NOx <u>39.55</u> tons/yr VOC <u>91.12</u> tons/yr SO2 <u>0.24</u> tons/yr
PM-10 <u>0.82</u> tons/yr CO <u>45.73</u> tons/yr Lead <u>0.00</u> tons/yr
Total HAP <u>7.33</u> tons/yr
Single HAP with greatest amount <u>n-Hexane</u> PTE <u>3.83</u> tons/yr
Total of regulated pollutants (for fee calculation), Sec. F, line 5 of form FEE <u>177.46</u> tons/yr

K. Existing Federally-Enforceable Permits

Permit number(s) <u>R6F0P-NM-04-R2</u>	Permit type <u>Part 71</u>	Permitting authority <u>EPA</u>
Permit number(s)	Permit type	Permitting authority
L. Emission Unit(s) Covered by Genera	Il Permits – Not Applica	ble

Emiss	sion unit(s) subject to general permit
Checl	cone: Application made Coverage granted
Gene	ral permit identifier Expiration Date//
M. Cross-ı	referenced Information
Does	this application cross-reference information? <u>YES X</u> NO (If yes, see instructions)

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information

Emissions unit ID: <u>1</u> Description: <u>Solar Saturn 1200 Turbine</u>

SIC Code (4-digit): <u>1389</u> SCC Code <u>20200201</u>

B. Emissions Unit Description

Primary use: <u>Compressor Drive</u> Temporary Source: Yes X No
Manufacturer: <u>Solar Turbines, Inc.</u> Model No.: <u>Saturn 1200</u>
Serial Number: <u>SC7895681</u> Installation Date / / <u>1989</u>
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)
Boiler horsepower rating Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat InputMM BTU/hr Max. Design Heat Input <u>10.84</u> MM BTU/hr

C. Fuel Data

Primary fuel type(s): <u>Natural Gas</u> Standby fuel type(s): <u>Not Applicable</u>

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	Negligible	Negligible	900 Btu/cf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage		
		Hourly	Annual	
Natural Gas	Not Applicable	12,044 scf	105.51 MMscf	

E. Associated Air Pollution Control Equipment – Not Applicable

Emissions unit ID	Device type
Air pollutant(s) Controlled	Manufacturer
Model No	Serial No
Installation date//	Control efficiency (%)
Efficiency estimation method	

F. Ambient Impact Assessment – Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp (°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information

Emissions unit ID: 2 Description: Waukesha L7042GL

SIC Code (4-digit): <u>1389</u> SCC Code <u>20200202</u>

B. Emissions Unit Description

Primary use: <u>Compressor Drive</u> Temporary Source: Yes X No			
Manufacturer: <u>Waukesha</u> Model No.: <u>L7042GL</u>			
Serial Number: <u>TBD</u> Installation Date / / <u>TBD</u>			
Boiler Type: Industrial boiler Process burner Electric utility boiler			
Other (describe)			
Boiler horsepower rating Boiler steam flow (lb/hr)			
Type of Fuel-Burning Equipment (coal burning only):			
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker			
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed			
Actual Heat InputMM BTU/hr Max. Design Heat Input <u>10.58</u> MM BTU/hr			

C. Fuel Data

Primary fuel type(s): <u>Natural Gas</u> Standby fuel type(s): <u>Not Applicable</u>

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Natural Gas	Negligible	Negligible	900 Btu/cf

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage		
		Hourly	Annual	
Natural Gas	Not Applicable	10,912 scf	95.59 MMscf	

E. Associated Air Pollution Control Equipment - Not Applicable

Emissions unit ID	Device type
Air pollutant(s) Controlled	Manufacturer
Model No	Serial No
Installation date//	Control efficiency (%)
Efficiency estimation method	

F. Ambient Impact Assessment – Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp (°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

Federal Operating Permit Program (40 CFR Part 71) EMISSION UNIT DESCRIPTION FOR FUEL COMBUSTION SOURCES (EUD-1)

A. General Information

Emissions unit ID: <u>3</u> Description: <u>Scania DS11</u>

SIC Code (4-digit): <u>1389</u> SCC Code <u>20200202</u>

B. Emissions Unit Description

Primary use: <u>Emergency Generator Engine</u> Temporary Source: <u>Yes X</u> No
Manufacturer: <u>Waukesha - Scania</u> Model No.: <u>F674DSU - DS11A06</u>
Serial Number: _ <u>951674</u> Installation Date / / <u>1970-1995</u>
Boiler Type: Industrial boiler Process burner Electric utility boiler
Other (describe)
Boiler horsepower rating Boiler steam flow (lb/hr)
Type of Fuel-Burning Equipment (coal burning only):
Hand firedSpreader stokerUnderfeed stokerOverfeed stoker
Traveling grateShaking gratePulverized, wet bed Pulverized, dry bed
Actual Heat InputMM BTU/hr Max. Design Heat Input <u>0.69</u> MM BTU/hr

C. Fuel Data

Primary fuel type(s): <u>Diesel</u> Standby fuel type(s): <u>Not Applicable</u>

Describe each fuel you expected to use during the term of the permit.

Fuel Type	Max. Sulfur Content (%)	Max. Ash Content (%)	BTU Value (cf, gal., or lb.)
Diesel	≤0.0015%	Unknown	138,000 Btu/gal

2

D. Fuel Usage Rates

Fuel Type	Annual Actual Usage	Maximum Usage		
		Hourly	Annual	
Diesel	Not Applicable	5 gal	2,500 gal	

E. Associated Air Pollution Control Equipment – Not Applicable

Emissions unit ID	Device type
Air pollutant(s) Controlled	Manufacturer
Model No	Serial No
Installation date//	Control efficiency (%)
Efficiency estimation method	

F. Ambient Impact Assessment – Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).

Stack height (ft)	Inside stack diameter (ft)
Stack temp (°F)	Design stack flow rate (ACFM)
Actual stack flow rate (ACFM)	Velocity (ft/sec)

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information

Emissions unit ID <u>T1</u> Description <u>490-bbl Condensate Storage Tank</u>

SIC Code (4-digit) <u>1389</u> SCC Code <u>40400311</u>

B. Emissions Unit Description

Equipment type	Condensate Storage Tai	nk Temporary s	ource: Yes	X No

Manufacturer <u>Permian</u> Model No. <u>N/A</u>

Serial No. <u>25428</u> Installation date <u>Unknown (Manufacture Date 1993)</u>

Articles being coated or degreased <u>N/A</u>

Application method <u>N/A</u>

Overspray (surface coating) (%) <u>N/A</u> Drying method <u>N/A</u>

No. of dryers <u>N/A</u> Tank capacity (degreasers) (gal) <u>N/A</u>

C. Associated Air Pollution Control Equipment – Not Applicable

Emissions unit ID	Device Type
Manufacturer	Model No
Serial No	Installation date//
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method

D. Ambient Impact Assessment – Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).		
Stack height (ft)	Inside stack diameter (ft)	
Stack temp (F)	Design stack flow rate (ACFM)	
Actual stack flow rate (ACFM)	Velocity (ft/sec)	

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Natural Gas Condensate	N/A	Natural Gas Condensate	N/A	2,548	929,922	5.7

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information

Emissions unit ID <u>T2</u> Description <u>400 bbl Condensate Storage Tank</u>

SIC Code (4-digit) <u>1389</u> SCC Code <u>40400311</u>

B. Emissions Unit Description

Equipment type	Condensate Storage Tank	Temporary source:	Yes	X No

Manufacturer <u>Permian</u> Model No. <u>N/A</u>

Serial No. <u>831-2918</u> Installation date <u>2014 (Manufacture Date 1965)</u>

Articles being coated or degreased <u>N/A</u>

Application method <u>N/A</u>

Overspray (surface coating) (%) <u>N/A</u> Drying method <u>N/A</u>

No. of dryers <u>N/A</u> Tank capacity (degreasers) (gal) <u>N/A</u>

C. Associated Air Pollution Control Equipment – Not Applicable

Emissions unit ID	Device Type
Manufacturer	Model No
Serial No	Installation date//
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method

D. Ambient Impact Assessment – Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).		
Stack height (ft)	Inside stack diameter (ft)	
Stack temp (F)	Design stack flow rate (ACFM)	
Actual stack flow rate (ACFM)	Velocity (ft/sec)	

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Natural Gas Condensate	N/A	Natural Gas Condensate	N/A	2,548	929,922	5.7

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information

Emissions unit ID <u>F1</u> Description <u>Piping Component Fugitive Emissions</u>

SIC Code (4-digit) <u>1389</u> SCC Code <u>31088811</u>

B. Emissions Unit Description

Equipment type	Valves, Flanges	, Seals, etc.	Temporary source:	Yes	X No

Manufacturer <u>Unknown</u> Model No. <u>Unknown</u>

Serial No. <u>Unknown</u> Installation date <u>Unknown</u>

Articles being coated or degreased <u>N/A</u>

Application method <u>N/A</u>

Overspray (surface coating) (%) <u>N/A</u> Drying method <u>N/A</u>

No. of dryers <u>N/A</u> Tank capacity (degreasers) (gal) <u>N/A</u>

C. Associated Air Pollution Control Equipment – Not Applicable

Emissions unit ID	Device Type
Manufacturer	Model No
Serial No	Installation date//
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method

D. Ambient Impact Assessment – Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).						
Stack height (ft)	Inside stack diameter (ft)					
Stack temp (F)	Design stack flow rate (ACFM)					
Actual stack flow rate (ACFM)	Velocity (ft/sec)					

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Natural Gas	N/A	Natural Gas	N/A	N/A	N/A	N/A

Federal Operating Permit Program (40 CFR Part 71) EMISSIONS UNIT DESCRIPTION FOR VOC EMITTING SOURCES (EUD-2)

A. General Information

Emissions unit ID <u>SSM</u> Description <u>Startup</u>, <u>Shutdown & Maintenance</u>

SIC Code (4-digit) <u>1389</u> SCC Code <u>31000299</u>

B. Emissions Unit Description

Eq	uip	ment type	SSM Emissions.	Temporar	y source:	Yes	Х	No

Manufacturer <u>N/A</u> Model No. <u>N/A</u>

Serial No. <u>N/A</u> Installation date <u>N/A</u>

Articles being coated or degreased <u>N/A</u>

Application method <u>N/A</u>

Overspray (surface coating) (%) <u>N/A</u> Drying method <u>N/A</u>

No. of dryers <u>N/A</u> Tank capacity (degreasers) (gal) <u>N/A</u>

C. Associated Air Pollution Control Equipment – Not Applicable

Emissions unit ID	Device Type
Manufacturer	Model No
Serial No	Installation date/ //
Control efficiency (%)	Capture efficiency (%)
Air pollutant(s) controlled	Efficiency estimation method

D. Ambient Impact Assessment – Not Applicable

This information must be completed by temporary sources or when ambient impact assessment is an applicable requirement for this emissions unit (this is not common).						
Stack height (ft)	Inside stack diameter (ft)					
Stack temp (F)	Design stack flow rate (ACFM)					
Actual stack flow rate (ACFM)	Velocity (ft/sec)					

E. VOC-containing Substance Data

List each VOC-containing substance consumed, processed or produced at the emissions unit that is emitted into the air. In the name column, if providing a brand name, include the name of the manufacture; if the substance contains HAP, list the constituent HAP.

Substance Name (Chemical, Brand Name)	CAS No.	Substance Type	Actual Usage (gal/yr)	Max Usage (gal/day)	Max Usage (gal/year)	VOC Content (Ib/gal)
Natural Gas	N/A	Natural Gas	N/A	N/A	N/A	N/A

Federal Operating Permit Program (40 CFR Part 71) INSIGNIFICANT EMISSIONS (IE)

On this page list each insignificant activity or emission unit. In the "number" column, indicate the number of units in this category. Descriptions should be brief but unique. Indicate which emissions criterion of part 71 is the basis for the exemption.

Number	Description of Activities or Emissions Units	RAP (except HAP)	НАР
4	Fuel Gas Heater (0.3 MMBtu/hr)	x	х
5	Tank Heater (0.3 MMBtu/hr)	x	x
L1	Truck Loading (Condensate)	x	х
L2	Truck Loading (Produced Water)	x	x
ТЗ	Produced Water Storage Tank (70 bbl)	x	x
T4	Lube Oil Storage Tank (500 gal)	x	x
T5	Lube Oil Storage Tank (500 bbl)	x	x
Т6	Ambitrol Storage Tank (350 gal)	x	x
T7	Methanol Storage Tank (500 gal)	x	x

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID 1

B. Identification and Quantification of Emissions

		Emission Rat		
	Actual	Potent	ial to Emit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NO2	19.3	4.4	19.3	
CO	11.4	2.6	11.4	
VOC	0.4	0.1	0.4	
SO2	0.2		0.2	
TSP	0.3	0.1	0.3	
PM10	0.3	0.1	0.3	
PM2.5	0.3	0.1	0.3	
Acetaldehyde			0.2	75070
Formaldehyde			0.2	50000
Total HAPs		0.1	0.5	
CO2			5544.6	
CH4			0.1	

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID 2

B. Identification and Quantification of Emissions

		Emission Rat		
	Actual			
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
NO2	19.2	4.4	19.2	
CO	33.9	7.7	33.9	
VOC	12.8	2.9	12.8	
SO2				
TSP	0.4	0.1	0.4	
PM10	0.4	0.1	0.4	
PM2.5	0.4	0.1	0.4	
Formaldehyde		0.5	2.2	50000
Total HAPs		0.5	2.3	
CO2			6,010.5	
CH4			0.1	

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID 3

B. Identification and Quantification of Emissions

		Emission Rat			
	Actual	Potent	ial to Emit		
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.	
NO2	0.2	3.0	0.8		
CO		0.7	0.2		
VOC		0.3	0.1		
SO2		0.2	0.1		
TSP		0.2	0.1		
PM10		0.2	0.1		
PM2.5		0.2	0.1		
Total HAPs					
CO2			31.2		
CH4					

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>T1</u>

B. Identification and Quantification of Emissions

		Emission Rat	tes	
	Actual	Potent	ial to Emit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC	8.7		52.8	
Benzene			0.4	71432
n-Hexane			3.1	110543
Xylenes			0.1	1330207
Total HAPs			3.7	
CO2			0.1	
CH4			13.6	

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>T2</u>

B. Identification and Quantification of Emissions

		Emission Rat		
	Actual	Potent	ial to Emit	
Air Pollutants	Annual Emissions (tons/yr)	Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC	1.5		2.8	
Benzene			0.1	71432
n-Hexane			0.2	110543
Total HAPs			0.2	

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>F1</u>

B. Identification and Quantification of Emissions

	Emission Rates			
	Actual Annual Emissions (tons/yr)	Potential to Emit		
Air Pollutants		Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC	4.8	1.1	4.8	
Total HAPs			0.1	
CO2			0.2	
CH4			7.2	

Calculate potential to emit (PTE) for applicability purposes and actual emissions for fee purposes for each emissions unit, control device, or alternative operating scenario identified in section I of form **GIS**. If form **FEE** does not need to be submitted with the application, do not calculate actual emissions.

A. Emissions Unit ID <u>SSM</u>

B. Identification and Quantification of Emissions

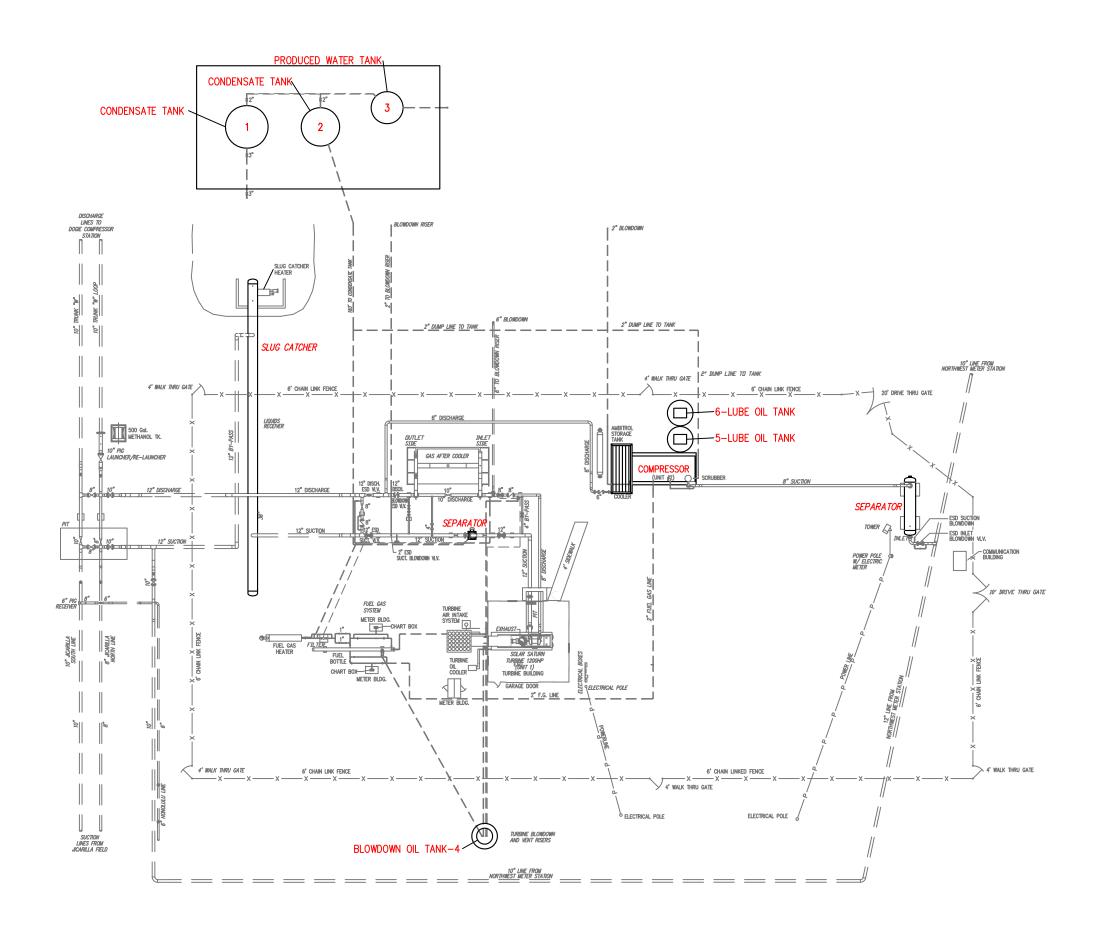
	Emission Rates			
Air Pollutants	Actual Annual Emissions (tons/yr)	Potential to Emit		
		Hourly (lb/hr)	Annual (tons/yr)	CAS No.
VOC	4.2		16.1	
n-Hexane			0.4	110543
Total HAPs			0.5	
CO2			1.2	
CH4			41.0	
			_	

Federal Operating Permit Program (40 CFR Part 71) POTENTIAL TO EMIT (PTE)

For each emissions unit at the facility, list the unit ID and the PTE of each air pollutant listed below and sum the values to determine the total PTE for the facility. It may be helpful to complete form **EMISS** before completing this form. Report each pollutant at each unit to the nearest tenth (0.1) of a ton; values may be reported with greater precision (i.e., more decimal places) if desired. Report facility total PTE for each listed pollutant on this form and in section **J** of form **GIS**. The HAP column is for the PTE of all HAPs for each unit. You may use an attachment to show any pollutants that may be present in major amounts that are not already listed on the form (this is not common).

	Regulate	d Air Poll		nd Polluta PTE in tons		ich Sour	ce is Major
Emissions Unit ID	NOx	voc	SO2	PM10	со	Lead	НАР
1	19.3	0.4	0.2	0.3	11.4	0.0	0.5
2	19.2	12.8	0.0	0.4	33.9	0.0	2.3
3	0.8	0.1	0.0	0.1	0.2	0.0	0.0
T1		52.8					3.7
T2		2.8					0.2
F1		4.8					0.1
SSM		16.1					0.5
FACILITY TOTALS:	39.6	91.12	0.2	0.8	45.7	0.0	7.3

Federal Operating Permit Program (40 CFR Part 71) CERTIFICATION OF TRUTH, ACCURACY, AND COMPLETENESS (CTAC)

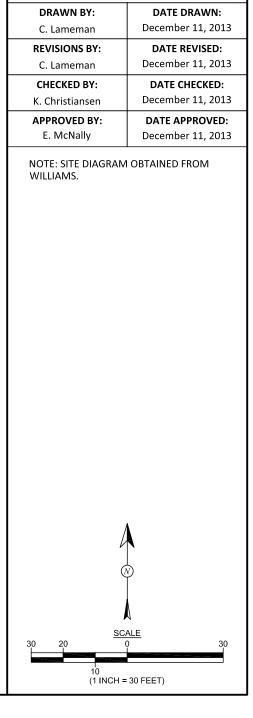

This form must be completed, signed by the "Responsible Official" designated for the facility or emission unit, and sent with each submission of documents (i.e., application forms, updates to applications, reports, or any information required by a part 71 permit).

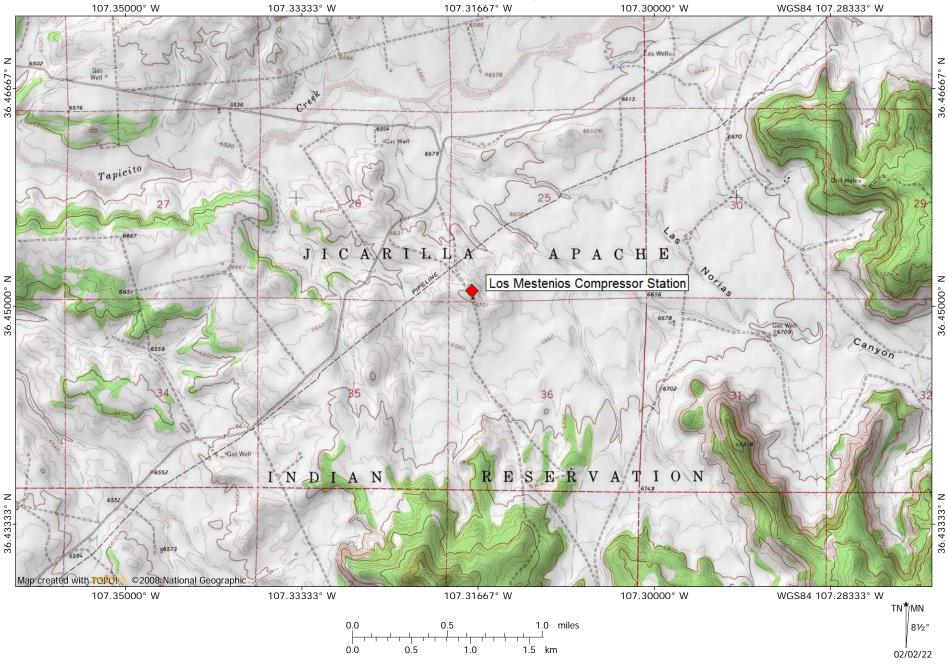
A. Responsible Official		
Name: (Last) <u>Jones</u>	(First) <u>Travis</u>	(MI)
Title <u>EH&S Manager</u>		
Street or P.O. Box <u>1111 Travis</u>	Street	
City Houston	State <u>TX</u> ZII	<u>77002</u>
Telephone (<u>713)289</u> - <u>2630</u> E	xt Facsimile	()
B. Certification of Truth, Accuracy a responsible official)	and Completeness (to b	be signed by the
I certify under penalty of law, based or inquiry, the statements and information and complete. Name (signed)		
Name (typed) Travis Jones	Date	2 1 1 12022

This Page Intentionally Left Blank

Section 2

Facility Plot Plan and Topographic Map




FIGURE 2

FACILITY LAYOUT WILLIAMS FOUR CORNERS LLC LOS MESTINIOS FACILITY SW¹/₄ SW¹/₄, SECTION 25, T26N, R5W RIO ARRIBA COUNTY, NEW MEXICO N36.45096, W107.31759

Animas Environmental Services, LLC

HARVEST FOUR CORNERS, LLC - LOS MESTENIOS COMPRESSOR STATION - Jicarilla Apache Reservation, Rio Arriba Co., NM T 26 N, R 05 W, Sec. 25/36 107.35000° W 107.33333° W 107.31667° W 107.30000° W WGS84 107.28333° W This Page Intentionally Left Blank

Section 3

Emission Calculations and Documentation

Turbine – Unit 1 (Solar Saturn T1200)

The nitrogen oxide (NOx), carbon monoxide (CO), and volatile organic compound (VOC) emissions from the Solar Saturn T1200 turbine (Unit 1) were taken from previous applications and permits. Sulfur dioxide (SO2) and particulate emissions were calculated using the AP-42 emission factors from Table 3.1-2a. Hazardous air pollutant (HAP) emissions were calculated using GRI-HAPCalc 3.0. Potential to Emit (PTE) and 2021 actual emissions were calculated assuming the turbine operates at full site capacity for 8,760 hours per year (hr/yr). There were no shutdowns during 2021.

Engine – Unit 2 (Waukesha L7042GL)

The NOx, CO, and VOC emissions from the Waukesha L7042GL engine were calculated using manufacturers data. SO2 and particulate emissions were calculated using the AP-42 emission factors from Table 3.2-2. Hazardous air pollutant (HAP) emissions were calculated using GRI-HAPCalc 3.0. PTE and 2021 actual emissions were calculated assuming the engine operates at full site capacity for 8,760 hr/yr.

Engine – Unit 3 (Waukesha – Scania DS11)

Emissions from the Waukesha Scania DS11 emergency generator engine were calculated using AP-42 emission factors from Tables 3.3-1 & 3.3-2. PTE emissions were calculated assuming the engine operates at full site capacity for 500 hr/yr. Actual 2021 emissions were calculated assuming the engine operates at full site capacity for 121.8 hr/yr.

Heaters – Units 4 & 5 (Fuel Gas & Tank Heaters)

Emissions from the heaters were calculated using AP-42 emission factors from Tables 1.4-1 & 1.4-2. PTE and 2021 actual emissions were calculated assuming the heaters operate at full capacity for 8,760 hours per year. The heaters are insignificant sources.

Equipment Leak Emissions – Unit F1

VOC and HAP emissions from equipment leaks were calculated using emission factors from Table 2.4 of the 1995 Protocol for Equipment Leak Emission Estimates published by the Environmental Protection Agency (EPA) and the gas stream composition obtained from a recent extended gas analysis. PTE and 2021 actual emissions were calculated assuming the equipment operates 8,760 hours per year.

Compressors and Associated Piping – Unit SSM

Emissions associated with startups, shutdowns and routine maintenance (SSM) of the turbine (Unit 1), engine (Unit 2), and associated piping, are vented to the atmosphere.

The VOC, HAP, and greenhouse gas emissions from blowdown of the compressors and piping associated with the facility were calculated from the quantity of gas vented during each event, the composition of the

gas, and the number of events. The quantity of gas vented during each event was estimated by Harvest. The composition of the gas was based on a recent gas analysis from the facility. The estimated annual number of blowdown events includes an added safety factor because emissions from each blowdown event are dependent on the composition of the gas in the pipeline and the number of blowdowns in a year may vary. Experience indicates the composition of the gas will vary.

The SSM emissions identified in this application are routine or predictable startup/shutdown and scheduled maintenance and do not include malfunctions or upsets.

Storage Tanks

Emissions from the condensate storage tank (Unit T1) were calculated using TANKS 4.0.9d for working/breathing losses and VMGSim for flash emissions. Emissions were calculated using the condensate (post-flash) throughput of 21,141 barrels per year.

Unit T2 operates as an overflow tank for Unit T1, and has only working and breathing losses. Its emissions were conservatively based on the assumption that it will have the same condensate throughput as Unit T1.

VOC and HAP emissions from the produced water tank were calculated using maximum throughputs and emission factors from the Colorado Department of Public Health and Environment (CDPHE) and the Texas Commission on Environmental Quality (TCEQ). As VOC emissions from the produced water storage tank are less than 2.0 tpy, the produced water storage tank is a Title V insignificant source.

Residual oil #6 was used as an estimate for lubrication oil. As the vapor pressure of residual oil #6 is less than 0.2 psia, the tanks containing lubrication and used oil were assumed to be Title V insignificant sources.

As the vapor pressures of ethylene glycol and propylene glycol are less than 0.2 psia, the tank containing Ambitrol was assumed to be a Title V insignificant source. Note that Ambitrol is an inhibited ethylene or propylene glycol coolant containing ethylene or propylene glycol, water and less than 5% dipotassium hydrogen phosphate;

VOC emissions from the methanol storage tank were calculated using TANKS 4. As emissions were only 44.79 pounds per year, the tank is a Title V insignificant source.

Truck Loading – Units L1 & L2 (Condensate and Produced H2O Loading)

The VOC emissions from truck loading were calculated using the AP-42 emissions factor identified in Section 5.2-1. As emission from each operation are less than 2.0 tpy, both operations are Title V insignificant sources.

Greenhouse Gas (GHG) Emissions

For the combustion sources (Units 1-3), carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions were calculated using emission factors from the 40 Code of Federal Regulations (CFR), Part C, Tables C-1 & C-2 and the higher heating value (HHV) design heat rates.

Facility Total PTE Emissions (Criteria Pollutants)

Company: Harvest Four Corners, LLC

Facility: Los Mestenios Compressor Station

Date: February 2022

Unit	Description	NC	DX,	С	О,	VC	DC,	SC	DX,	TS	SP,	PN	110,	PM	2.5,
Number		pph	tpy												
1	Solar Saturn T1200	4.41	19.30	2.60	11.40	9.13E-02	4.00E-01	3.69E-02	1.61E-01	7.15E-02	3.13E-01	7.15E-02	3.13E-01	7.15E-02	3.13E-01
2	Waukesha 7042GL	4.38	19.20	7.74	33.92	2.92	12.80	5.77E-03	2.53E-02	9.81E-02	4.30E-01	9.81E-02	4.30E-01	9.81E-02	4.30E-01
3	Scania DS11	3.04	7.61E-01	6.56E-01	1.64E-01	2.48E-01	6.21E-02	2.00E-01	5.00E-02	2.14E-01	5.35E-02	2.14E-01	5.35E-02	2.14E-01	5.35E-02
4	Fuel Gas Heater	3.33E-02	1.46E-01	2.80E-02	1.23E-01	1.83E-03	8.03E-03	2.00E-04	8.76E-04	2.53E-03	1.11E-02	2.53E-03	1.11E-02	2.53E-03	1.11E-02
5	Tank Heater	3.33E-02	1.46E-01	2.80E-02	1.23E-01	1.83E-03	8.03E-03	2.00E-04	8.76E-04	2.53E-03	1.11E-02	2.53E-03	1.11E-02	2.53E-03	1.11E-02
SSM	SSM	-	-	-	-	-	16.10	-	-	-	-	-	-	-	-
F1	Leaks	-	-	-	-	1.10	4.81	-	-	-	-	-	-	-	-
L1	Truck Loading (Condensate)	-	-	-	-	-	1.18	-	-	-	-	-	-	-	-
L2	Truck Loading (Produced H2O)	-	-	-	-	-	1.38E-03	-	-	-	-	-	-	-	-
T1	Condensate Tank - 480 bbl	-	-	-	-	-	52.82	-	-	-	-	-	-	-	-
T2	Condensate Tank - 400 bbl	-	-	-	-	-	2.80	-	-	-	-	-	-	-	-
Т3	Produced H2O Tank - 70 bbl	-	-	-	-	-	1.10E-01	-	-	-	-	-	-	-	-
T4	Lube Oil Tank - 500 gal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T5	Used Oil Tank - 500 gal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Т6	Ambitrol Tank - 350 gal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T7	Methanol Tank - 500 gal	-	-	-	-	-	2.24E-02	-	-	-	-	-	-	-	-
	Total	11.90	39.55	11.06	45.73	4.36	91.12	2.43E-01	2.38E-01	3.89E-01	8.19E-01	3.89E-01	8.19E-01	3.89E-01	8.19E-01

Company: Harvest Four Corners, LLC

Facility: Los Mestenios Compressor Station Date/Rev: February 2022

Unit Number	Description	Total I	HAPs,	1,3-But	adiene,	Acetald	ehyde,	Acro	olein,	Benz	zene,	Biph	enyl,
		pph	tpy										
1	Solar Saturn T1200	1.04E-01	4.55E-01	1.60E-04	7.00E-04	4.34E-02	1.90E-01	6.39E-04	2.80E-03	1.35E-03	5.90E-03	8.22E-04	3.60E-03
2	Waukesha 7042GL	5.17E-01	2.26							1.52E-02	6.65E-02		
3	Scania DS11	2.52E-03	6.31E-04			5.29E-04	1.32E-04			6.44E-04	1.61E-04		
4	Fuel Gas Heater	4.29E-03	1.88E-02	9.13E-05	4.00E-04	2.28E-04	1.00E-03			2.28E-04	1.00E-03		
5	Tank Heater	4.29E-03	1.88E-02	9.13E-05	4.00E-04	2.28E-04	1.00E-03			2.28E-04	1.00E-03		
SSM	SSM		4.62E-01								3.12E-02		
F1	Leaks	3.16E-02	1.38E-01							2.13E-03	9.31E-03		
L1	Truck Loading (Condensate)		7.37E-02								5.84E-03		
L2	Truck Loading (Produced H2O)		2.35E-06								3.69E-07		
T1	Condensate Tank - 480 bbl		3.68								3.79E-01		
T2	Condensate Tank - 400 bbl		2.04E-01								1.62E-02		
Т3	Produced H2O Tank - 70 bbl		1.88E-02								2.94E-03		
T4	Lube Oil Tank - 500 gal												
T5	Used Oil Tank - 500 gal												
Т6	Ambitrol Tank - 350 gal												
T7	Methanol Tank - 500 gal										2.94E-03		
	Total	6.64E-01	7.33	3.42E-04	1.50E-03	4.44E-02	1.92E-01	6.39E-04	2.80E-03	1.98E-02	5.21E-01	8.22E-04	3.60E-03

Company: Harvest Four Corners, LLC

Facility: Los Mestenios Compressor S

Date/Rev: February 2022

Unit Number	Description	Chror	nium,	Ethylbe	enzene,	Formal	dehyde,	n-He	kane,	Isooo	ctane	Manga	anese,
		pph	tpy										
1	Solar Saturn T1200	6.85E-05	3.00E-04	2.51E-04	1.10E-03	4.24E-02	1.86E-01	3.77E-03	1.65E-02	4.02E-03	1.76E-02	4.57E-05	2.00E-04
2	Waukesha 7042GL					4.92E-01	2.15						
3	Scania DS11					8.14E-04	2.04E-04						
4	Fuel Gas Heater			6.39E-04	2.80E-03	2.51E-04	1.10E-03	4.11E-04	1.80E-03	8.45E-04	3.70E-03		
5	Tank Heater			6.39E-04	2.80E-03	2.51E-04	1.10E-03	4.11E-04	1.80E-03	8.45E-04	3.70E-03		
SSM	SSM				6.89E-04				3.63E-01		9.11E-03		
F1	Leaks			4.70E-05	2.06E-04			2.48E-02	1.08E-01	7.07E-04	3.10E-03		
L1	Truck Loading (Condensate)				3.21E-04				6.37E-02		1.17E-03		
L2	Truck Loading (Produced H2O)				3.69E-08				1.16E-06				
T1	Condensate Tank - 480 bbl				1.89E-02				3.09		5.43E-02		
T2	Condensate Tank - 400 bbl				8.90E-04				1.77E-01		3.23E-03		
Т3	Produced H2O Tank - 70 bbl				2.94E-04				9.24E-03				
T4	Lube Oil Tank - 500 gal												
Т5	Used Oil Tank - 500 gal												
Т6	Ambitrol Tank - 350 gal												
Τ7	Methanol Tank - 500 gal												
	Total	6.85E-05	3.00E-04	1.58E-03	2.80E-02	5.35E-01	2.34	2.94E-02	3.83	6.42E-03	9.59E-02	4.57E-05	2.00E-04

Company: Harvest Four Corners, LLC

Facility: Los Mestenios Compressor S

Date/Rev: February 2022

Unit Number	Description	Meth	anol,	Naphth	nalene,	Nic	kel,	Phe	nol,	Phospl	norous,	Propiona	lldehyde,
		pph	tpy										
1	Solar Saturn T1200			2.28E-05	1.00E-04	2.28E-05	1.00E-04	2.74E-04	1.20E-03	1.60E-04	7.00E-04	2.17E-03	9.50E-03
2	Waukesha 7042GL												
3	Scania DS11			5.85E-05	1.46E-05								
4	Fuel Gas Heater	2.97E-04	1.30E-03										
5	Tank Heater	2.97E-04	1.30E-03										
SSM	SSM												
F1	Leaks												
L1	Truck Loading (Condensate)												
L2	Truck Loading (Produced H2O)												
T1	Condensate Tank - 480 bbl												
T2	Condensate Tank - 400 bbl												
Т3	Produced H2O Tank - 70 bbl												
Τ4	Lube Oil Tank - 500 gal												
Т5	Used Oil Tank - 500 gal												
Т6	Ambitrol Tank - 350 gal												
Τ7	Methanol Tank - 500 gal		2.24E-02										
	Total		2 505 02	9 125 05	1 155 04	2 295 05	1 005 04	2745.04	1 205 02	1 605 04		2 17E 02	9.50E-03
	Total	5.94E-04	2.50E-02	8.13E-05	1.15E-04	2.28E-05	1.00E-04	2.74E-04	1.20E-03	1.60E-04	7.00E-04	2.17E-0	13

Company: Harvest Four Corners, LLC

Facility: Los Mestenios Compressor S

Date/Rev: February 2022

Unit Number	Description	Propylen	e Oxide,	Styr	ene,	Tolu	ene,	Xyle	nes,
		pph	tpy	pph	tpy	pph	tpy	pph	tpy
1	Solar Saturn T1200	3.20E-04	1.40E-03			1.03E-03	4.50E-03	3.11E-03	1.36E-02
2	Waukesha 7042GL					6.14E-03	2.69E-02	4.09E-03	1.79E-02
3	Scania DS11					2.82E-04	7.06E-05	1.97E-04	4.92E-05
4	Fuel Gas Heater			6.16E-04	2.70E-03	2.97E-04	1.30E-03	3.88E-04	1.70E-03
5	Tank Heater			6.16E-04	2.70E-03	2.97E-04	1.30E-03	3.88E-04	1.70E-03
SSM	SSM						4.93E-02		8.27E-03
F1	Leaks					3.36E-03	1.47E-02	5.64E-04	2.47E-03
L1	Truck Loading (Condensate)						7.68E-04		1.86E-03
L2	Truck Loading (Produced H2O)						4.74E-07		3.16E-07
T1	Condensate Tank - 480 bbl						4.46E-02		9.45E-02
T2	Condensate Tank - 400 bbl						2.13E-03		5.15E-03
Т3	Produced H2O Tank - 70 bbl						3.78E-03		2.52E-03
T4	Lube Oil Tank - 500 gal								
T5	Used Oil Tank - 500 gal								
Т6	Ambitrol Tank - 350 gal								
Τ7	Methanol Tank - 500 gal								
	Total	3.20E-04	1.40E-03	1.23E-03	5.40E-03	1.14E-02	1.49E-01	8.73E-03	1.50E-01

Turbine Exhaust PTE Emissions Calculations

Unit Number:	1
Description:	Solar Saturn T1200

Horsepower Calculations

6,715 ft above MSL 1,200 hp 1,136 hp	Elevation Nameplate hp Site-rated hp	Mfg. data Mfg. data
Fuel Consumption		
10.84 MMBtu/hr	Hourly fuel consumption	Btu/hp-hr x NMAQB site-rated hp / 1,000,000
12,044 scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
8,760 hr/yr	Annual operating time	Harvest Four Corners, LLC
94,958 MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
105.51 MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000
900 Btu/scf	Field gas heating value	Nominal heat content

Steady-State Emission Rates

Pollutants	Uncontrolled E	mission Rates,
	pph	tpy
NOX	4.41	19.30
СО	2.60	11.40
VOC	9.13E-02	4.00E-01

Emissions brought forward from Part 71 TV permit R6NM-04-10-M1

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
SO2	3.40E-03	3.69E-02	1.61E-01
TSP	6.60E-03	7.15E-02	3.13E-01
PM10	6.60E-03	7.15E-02	3.13E-01
PM2.5	6.60E-03	7.15E-02	3.13E-01

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

<u>GRI-HAPCalc[®] 3.0</u> <u>Turbine Report</u>

	Facility ID:	LOS MESTEN	IOS	Notes:
	Operation Type:	COMPRESSO	R STATION	
	Facility Name:	LOS MESTEN	IOS COMPRE	ESSOR
	User Name:	Harvest Four	Corners, LLC	
	Units of Measure	U.S. STANDA	RD	
	Emissions less than 5.0 These emissions are in	dicated on the repo		e considered insignificant and are treated as zero.
\square	Emissions between 5.0 Turbine Unit	0E-09 and 5.00E-05	tons (or tonnes	s) per year are represented on the report with "0.0000".
		0E-09 and 5.00E-05	tons (or tonnes	s) per year are represented on the report with "0.0000".
<u>с</u>	Turbine Unit Jnit Name: T1200	0E-09 and 5.00E-05		s) per year are represented on the report with "0.0000". Yearly
C I	Turbine Unit Jnit Name: T1200	Operation:		γearly

Emission Factor Set: FIELD > EPA > LITERATURE

Additional EF Set: -NONE-

Calculated Emissions (ton/yr)

Chemical Name	Emissions	Emission Factor	Emission Factor Set
HAPs_			
Formaldehyde	0.1856	0.01693680 g/bhp-hr	GRI Field
Acetaldehyde	0.1900	0.01733570 g/bhp-hr	GRI Field
1,3-Butadiene	0.0007	0.00006160 g/bhp-hr	GRI Field
Acrolein	0.0028	0.00026000 g/bhp-hr	GRI Field
Propional	0.0095	0.00086500 g/bhp-hr	GRI Field
Propylene Oxide	0.0014	0.00012480 g/bhp-hr	EPA
n-Nitrosodimethylamine	0.0000	0.00000100 g/bhp-hr	EPA
Benzene	0.0059	0.00053840 g/bhp-hr	GRI Field
Toluene	0.0045	0.00041100 g/bhp-hr	GRI Field
Ethylbenzene	0.0011	0.00010330 g/bhp-hr	EPA
Xylenes(m,p,o)	0.0136	0.00124410 g/bhp-hr	GRI Field
2,2,4-Trimethylpentane	0.0176	0.00160530 g/bhp-hr	GRI Field
n-Hexane	0.0165	0.00150580 g/bhp-hr	GRI Field
Phenol	0.0012	0.00011010 g/bhp-hr	GRI Field
n-Nitrosomorpholine	0.0000	0.00000100 g/bhp-hr	EPA
Naphthalene	0.0001	0.00000760 g/bhp-hr	GRI Field
2-Methylnaphthalene	0.0000	0.00000130 g/bhp-hr	GRI Field
Biphenyl	0.0036	0.00033050 g/bhp-hr	GRI Field
Phenanthrene	0.0000	0.0000050 g/bhp-hr	GRI Field
Chrysene	0.0000	0.00000100 g/bhp-hr	GRI Field
Beryllium	0.0000	0.00000010 g/bhp-hr	GRI Field
Phosphorous	0.0007	0.00006520 g/bhp-hr	GRI Field
Chromium	0.0001	0.00000820 g/bhp-hr	GRI Field
Chromium	0.0001	0.00000560 g/bhp-hr	EPA
Manganese	0.0002	0.00001750 g/bhp-hr	GRI Field
Nickel	0.0001	0.00000610 g/bhp-hr	GRI Field
Cobalt	0.0000	0.00000160 g/bhp-hr	GRI Field

	Arsenic	0.0000	0.0000060	g/bhp-hr	GRI Field
	Selenium	0.0000	0.0000030	•	GRI Field
	Cadmium	0.0000	0.0000020		GRI Field
	Mercury	0.0000	0.00000270	g/bhp-hr	GRI Field
	Lead	0.0000	0.00000340	g/bhp-hr	GRI Field
Tota	l	0.4553			
Cr	iteria Pollutants				
	PM	0.3490	0.03184680	g/bhp-hr	EPA
	СО	23.1061	2.10828420	g/bhp-hr	GRI Field
	NMHC	2.1248	0.19387800	g/bhp-hr	GRI Field
	NMEHC	0.1321	0.01205010	g/bhp-hr	EPA
	NOx	13.7233	1.25216290	g/bhp-hr	GRI Field
	SO2	0.0113	0.00102720	g/bhp-hr	GRI Field
<u>Ot</u>	<u>her Pollutants</u>				
	Methane	10.8193	0.98719230	g/bhp-hr	GRI Field
	Acetylene	0.0785	0.00716540	g/bhp-hr	GRI Field
	Ethylene	0.1529	0.01395450	g/bhp-hr	GRI Field
	Ethane	1.6449	0.15008370	g/bhp-hr	GRI Field
	Propane	0.1754	0.01600000	g/bhp-hr	GRI Field
	Isobutane	0.0526	0.00480000	g/bhp-hr	GRI Field
	Butane	0.0570	0.00520000	g/bhp-hr	GRI Field
	Trimethylamine	0.0000	0.0000070	g/bhp-hr	EPA
	Cyclopentane	0.0181	0.00165110	g/bhp-hr	GRI Field
	Butyrald/Isobutyraldehyde	0.0147	0.00134000	g/bhp-hr	GRI Field
	n-Pentane	0.8894	0.08115000	g/bhp-hr	GRI Field
	Cyclohexane	0.0671	0.00612400	g/bhp-hr	GRI Field
	Methylcyclohexane	0.0968	0.00883120	g/bhp-hr	GRI Field
	n-Octane	0.0349	0.00318890	g/bhp-hr	GRI Field
	1,3,5-Trimethylbenzene	0.0329	0.00300000	g/bhp-hr	GRI Field
	n-Nonane	0.0058	0.00053260	g/bhp-hr	GRI Field
	CO2	5,188.2765	473.39811550	g/bhp-hr	EPA
	Vanadium	0.0000	0.0000070	g/bhp-hr	GRI Field
	Copper	0.0002	0.00002050	g/bhp-hr	GRI Field
	Molybdenum	0.0002	0.00002030	g/bhp-hr	GRI Field
	Barium	0.0003	0.00002290	g/bhp-hr	GRI Field

	Emissi	on Factors ^a - Uncontrolle	ed	
	Natural Gas-	Fired Turbines ^b	Distillate Oi	l-Fired Turbines ^d
Pollutant	(lb/MMBtu) ^c (Fuel Input)	Emission Factor Rating	(lb/MMBtu) ^e (Fuel Input)	Emission Factor Rating
$\mathrm{CO}_2^{\mathrm{f}}$	110	А	157	А
N ₂ O	0.003 ^g	Е	ND	NA
Lead	ND	NA	1.4 E-05	С
SO ₂	0.94S ^h	В	1.01S ^h	В
Methane	8.6 E-03	С	ND	NA
VOC	2.1 E-03	D	4.1 E-04 ^j	Е
TOC^k	1.1 E-02	В	4.0 E-03 ¹	С
PM (condensible)	4.7 E-03 ¹	С	7.2 E-03 ¹	С
PM (filterable)	1.9 E-03 ¹	С	4.3 E-03 ¹	С
PM (total)	6.6 E-03 ¹	С	$1.2 \text{ E-}02^{l}$	С

Table 3.1-2a. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSEGASES FROM STATIONARY GAS TURBINES

^a Factors are derived from units operating at high loads (≥ 80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief". ND = No Data, NA = Not Applicable.

^b SCCs for natural gas-fired turbines include 2-01-002-01, 2-02-002-01 & 03, and 2-03-002-02 & 03.

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. Similarly, these emission factors can be converted to other natural gas heating values.

^d SCCs for distillate oil-fired turbines are 2-01-001-01, 2-02-001-01, 2-02-001-03, and 2-03-001-02.

^e Emission factors based on an average distillate oil heating value of 139 MMBtu/ 10^3 gallons. To convert from (lb/MMBtu) to (lb/ 10^3 gallons), multiply by 139.

- ^f Based on 99.5% conversion of fuel carbon to CO₂ for natural gas and 99% conversion of fuel carbon to CO₂ for distillate oil. CO₂ (Natural Gas) [lb/MMBtu] = (0.0036 scf/Btu)(% CON)(C)(D), where % CON = weight percent conversion of fuel carbon to CO₂, C = carbon content of fuel by weight, and D = density of fuel. For natural gas, C is assumed at 75%, and D is assumed at 4.1 E+04 lb/10⁶ scf. For distillate oil, CO₂ (Distillate Oil) [lb/MMBtu] = (26.4 gal/MMBtu) (%CON)(C)(D), where C is assumed at 87%, and the D is assumed at 6.9 lb/gallon.
- ^g Emission factor is carried over from the previous revision to AP-42 (Supplement B, October 1996) and is based on limited source tests on a single turbine with water-steam injection (Reference 5).
- ^h All sulfur in the fuel is assumed to be converted to SO₂. S = percent sulfur in fuel. Example, if sulfur content in the fuel is 3.4 percent, then S = 3.4. If S is not available, use 3.4 E-03 lb/MMBtu for natural gas turbines, and 3.3 E-02 lb/MMBtu for distillate oil turbines (the equations are more accurate).
- ^j VOC emissions are assumed equal to the sum of organic emissions.
- ^k Pollutant referenced as THC in the gathered emission tests. It is assumed as TOC, because it is based on EPA Test Method 25A.
- ¹ Emission factors are based on combustion turbines using water-steam injection.

Engine Exhaust PTE Emissions Calculations

Unit Number:	2
Description:	Waukesha L7042GL
Туре:	Four Stroke Lean Burn (Turbocharged)

Horsepower Calculations

6,715 ft above MSL	Elevation	
1,480 hp	Nameplate hp	Mfg. data
1,326 hp	Mfg. Site-rated hp	Mfg. product bulletin Power Derate, S8154-6, April 2001 (loss of 2% for every 1,000 ft over 1,500 ft)
Engine Specifications		
1200 rpm	Engine rpm	Mfg. data
7040 cu in	Engine displacement	Mfg. data
124.28 psi	BMEP	792,000 x Mfg. Site-rated hp / (rpm * cu in)
Fuel Consumption		
7408 Btu/hp-hr	Brake specific fuel consumption	Mfg. data
9.82 MMBtu/hr	Hourly fuel consumption	Btu/hp-hr x Mfg. site-rated hp / 1,000,000
900 Btu/scf	Field gas heating value	Nominal heat content
10,912 scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
<mark>8,760</mark> hr/yr	Annual operating time	Harvest Four Corners, LLC
86,027 MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
95.59 MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	g/hp-hr	pph	tpy
NOX	1.50	4.38	19.20
СО	2.65	7.74	33.92
VOC	1.00	2.92	12.80

Emission factors taken from Waukesha Bulletin 7005 0107

Uncontrolled Emission Rates (pph) = g/hp-hr x hp / 453.59 g/lb

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Emission		
Pollutants	Factors,	Uncontrolled Emission Rat	
	lb/MMBtu	pph	tpy
SO2	5.88E-04	5.77E-03	2.53E-02
TSP	9.99E-03	9.81E-02	4.30E-01
PM10	9.99E-03	9.81E-02	4.30E-01
PM2.5	9.99E-03	9.81E-02	4.30E-01

Emission factors taken from AP-42, Table 3.2-2

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

<u>GRI-HAPCalc[®] 3.0</u> <u>Engines Report</u>

	Facility ID: Operation Type: Facility Name: User Name: Units of Measure:	LOS MEST Harvest Fo	SSOR STATIOI FENIOS COMP pur Corners, L	RESSOR	Notes:	
7	These emissions are ind	icated on the l	report with a "0".		ered insignificant and are treated as a ar are represented on the report with	
ι	Jnit Name: 7042GL					
	Hours of C	Operation:	8,760	Yearly		
	Rate Powe	ər:	1,326	hp		
	Fuel Type	:	FIELD GAS			
	Engine Ty	pe:	4-Stroke, Lea	n Burn		
	Emission I	Factor Set:	FIELD > EPA	> LITERA	TURE	
	Additional	EF Set:	-NONE-			
			<u>Calc</u>	ulated E	Emissions (ton/yr)	
	<u>Chemical Nam</u> HAPs	<u>1e</u>	<u>En</u>	<u>nissions</u>	Emission Factor	Emission Factor Set

HAPs			
Formaldehyde	2.1530	0.16830000 g/bhp-hr	GRI Literature
Benzene	0.0665	0.00520000 g/bhp-hr	GRI Literature
Toluene	0.0269	0.00210000 g/bhp-hr	GRI Literature
Xylenes(m,p,o)	0.0179	0.00140000 g/bhp-hr	GRI Literature
Total	2.2643		

STANDARD EQUIPMENT

AIR CLEANER – Two, 3" dry type filter with hinged rain shield and service indicator. BARRING DEVICE – Manual.

BATTERY BOX – Ship loose battery box designed to accommodate two series 31 12 VDC batteries. Includes power disconnect switch and 20 foot (6.1 m) cable for connection to ESM Power Distribution Box.

BEARINGS - Heavy duty, replaceable, precision type.

BREATHER - Self regulating, closed system.

CONNECTING RODS - Drop forged steel, rifle drilled.

CONTROL SYSTEM – Waukesha Engine System Manager (ESM) integrates spark timing control, speed governing, detonation detection, start-stop control, diagnostic tools, fault logging and engine safeties. Engine Control Unit (ECU) is central brain of the control system and main customer interface. Interface with ESM is through 25 foot (7.6 m) harness to local panel, through MODBUS RTU slave connection RS-485 multidrop hardware, and through

the Electronic Service Program (ESP). Customer connections are only required to the local panel, fuel valve, and 24V DC power supply. Compatible with Woodward load sharing module. ESM meets Canadian Standards Association Class I, Division 2, Group D, hazardous location requirements. ESM controlled prechamber logic.

- **CRANKCASE** Integral crankcase and cylinder frame. Main bearing caps drilled and tapped for temperature sensors. Does not include sensors.
- **CRANKSHAFT** Counterweighted, forged steel, seven main bearings, and dynamically balanced.
- CYLINDERS Removable bainitic cast iron wet type cylinder liners, chrome plated on outer diameter.
- CYLINDER HEADS Twelve interchangeable. Two hard faced intake and two hard faced exhaust valves per cylinder. Hard faced intake and exhaust valve seat inserts. Roller valve lifters and hydraulic push rods. Includes prechamber and related fuel control valves.

ENGINE ROTATION - Counterclockwise when facing flywheel.

- ENGINE MONITORING DEVICES Factory mounted and wired sensors for lube oil pressure and temperature; intake manifold temperature and pressure; overspeed; and jacket water temperature; all accessible through ESM®. ESM continually monitors combustion performance through accelerometers to provide detonation protection. Dual magnetic pick-ups are used for accurate engine speed monitoring. ESM provides predictive spark plug diagnostics as well as advanced diagnostics of engine and all ESM sensors and logs any faults into non-volatile flash memory.
- EXHAUST THERMOCOUPLES 14 K-type thermocouples. One for each individual cylinder and one pre-turbine for each bank and 25 foot (7.6 m) harness.

EXHAUST OUTLET - Single vertical at rear. Flexible stainless steel connection with 8" (203 mm) pipe flange.

FLYWHEEL – Approx. WR2 = 155000 lb-in2; with ring gear (208 teeth), machined to accept two drive adapters: 31.88" (810 mm) pilot bore, 30.25"(768 mm) bolt circle, (12) 0.75"–10 tapped holes; or 28.88" (734 mm) pilot bore, 27.25" (692 mm) bolt circle, (12) 0.625"–11 tapped holes and (12) 0.75"–10 tapped holes.

FLYWHEEL HOUSING - No. 00 SAE.

- FUEL SYSTEM Single 3" ANSI flange fuel inlet connection. Dual natural gas, 4" (102 mm) duplex updraft carburetors. Two mounted Mooney Flowgrid 250, 2" (51 mm) gas regulators, 43 – 60 psi (296 – 414 kPa) gas inlet pressure required. Prechamber fuel system and control logic. 10 foot (3 m) harness provided for ESM control of customer supplied fuel shutoff valve.
- GOVERNOR Electric throttle actuator controlled by ESM with throttle position feedback. Governor tuning is performed using ESP. ESM includes option of a load-coming feature to improve engine response to step loads.
- **IGNITION SYSTEM** Ignition Power Module (IPM) controlled by ESM, with spark timing optimized for any speed-load condition. Dual voltage energy levels automatically controlled by ESM to maximize spark plug life.

INTERCOOLER - Air-to-water.

LEVELING BOLTS

LIFTING EYES - Requires 9.5 ton Working Load Limit (W.L.L.) anchor shackles.

LUBRICATION – Full pressure, gear type pump. Engine mounted full flow lube oil micro-fiberglass filters with mounted differential pressure gauge. MICROSPIN® bypass filter, engine mounted. Lube oil strainer, mounted. Air/gas motor driven prelube pump, requires final piping.

MANIFOLDS - Exhaust, (2) water cooled.

- OIL COOLER Shell and tube type, with thermostatic temperature controller and pressure regulating valve. Factory mounted.
- OIL PAN Deep sump type. 190 gallon (719 L) capacity including filter and cooler.

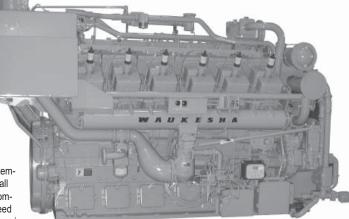
PAINT - Oilfield orange primer.

PISTONS – Aluminum with floating pin. Oil cooled.

SHIPPING SKID - For domestic truck or rail.

TURBOCHARGERS – Two, dry type. Wastegate controlled.

VIBRATION DAMPER – Two, viscous type. Guard included with remote mounted radiator or no radiator.


WATER CIRCULATING SYSTEM, AUXILIARY CIRCUIT – Belt driven water circulating high capacity pump for intercooler and lube oil cooler. See S6543-38 performance curve for use with standard 10" diameter crankshaft pulley. Includes thermostatic valve.

WATER CIRCULATING SYSTEM, ENGINE JACKET – Belt driven water circulating pump, cluster type thermostatic temperature regulating valve, full flow bypass type. Flange connections and mating flanges for (2) 4" (102 mm) inlets and (1) 5" (127 mm) outlet.

L7042GL

VHP[®] Gas Engine 886 - 1547 BHP

Engine shown without Extender Series Features.

Model L7042GL with ESM®

Turbocharged and Intercooled, Twelve Cylinder, Lean Combustion, Four-Cycle Gas Engine

SPECIFICATIONS

Cylinders V 12 Piston Displacement Lube Oil Capacity 190 gal. (719 L)

Starting System

7040 cu. in. (115 L)

Bore & Stroke 9.375" x 8.5" (238 x 216 mm) 24/32V electric Dry Weight 21,000 lb. (9525 kg)

Compression Ratio

Jacket Water System Capacity 107 gal. (405 L)

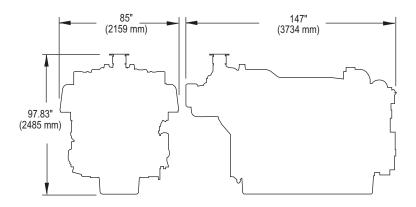
POWER RATINGS: L7042GL VHP® GAS ENGINES

	Brake Horsepower (kWb Output)							
Model	°F (°C) (Tcra)	C.R.	800 rpm	900 rpm	1000 rpm	1100 rpm	1200 rpm	
L7042GL	85° (29°)	10.5:1	928 (692)	1160 (865)	1289 (961)	1418 (1057)	1547 (1154)	
L7042GL	130° (54°)	10.5:1	886 (661)	1110 (828)	1233 (919)	1357 (1012)	1480 (1104)	

Rating Standard: All models: Ratings are based on ISO 3046/1-1995 with mechanical efficiency of 90% and auxiliary water temperature Tcra (clause 10.1) as specified above limited to ± 10° F (± 5° C). Ratings are also valid for SAE J1349, BS5514, DIN6271 and AP17B-11C standard atmospheric conditions.

ISO Standard Power/Continuous Power Rating: The highest load and speed which can be applied 24 hours a day, seven days a week, 365 days per year except for normal maintenance. It is permissible to operate the engine at up to 10% overload, or maximum load indicated by the intermittent rating, whichever is lower, for two hours in each 24 hour period.

All natural gas engine ratings are based on a fuel of 900 Btu/ft³ (35.3 MJ/nm³) SLHV value, with a 91 Waukesha Knock Index[®].


For conditions or fuels other than standard, contact the Waukesha Engine Sales Engineering Department.

PERFORMANCE: L7042GL VHP® GAS ENGINES

	English	130°	F ICW	85° F	ICW	_	Metric	54° (CICW	29° (CICW
NO _x Settings	RPM	1200	1000	1200	1000	NO _x Settings	RPM	1200	1000	1200	1000
	Power (Bhp)	1480	1233	1547	1289		Power (kWb)	1104	919	1154	962
g NO _x	BSFC (Btu/bhp-hr)	7135	6850	7160	6865	Ň	BSFC (kJ/kW-hr)	10089	9686	10124	9707
gN	NOx (grams/bhp-hr)	1.50	1.50	1.50	1.50	D	NOx (g/nm³)	0.62	0.62	0.62	0.62
1.5	CO (grams/bhp-hr)	2.65	2.65	2.65	2.65	1.5	CO (g/nm³)	1.09	1.09	1.09	1.09
	NMHC (grams/bhphr)	0.70	0.80	0.80	0.90		NMHC (g/nm ³)	0.29	0.41	0.33	0.37

NOTES:

- Fuel consumption and exhaust emissions are based on ISO 3046/1-1995 standard reference conditions and commercial quality natural gas of 900 Btu/ft³ (35.38 MJ/m³ [25, V(0; 101.325)]) saturated lower heat value, Waukesha Knock Index[®] of 91 and 93% methane content by volume. ISO 3046/1-1995 standard reference conditions are 77°F (25°C) ambient temperature, 29.54 inches Hg (100 kPa) barometric pressure, 30% relative humidity (1kPa/0.3 inches Hg water vapor pressure).
- 2) S.I. exhaust emissions are corrected to 5% O₂ (0°C and 101.325 kPa).
- 3) Data will vary due to variations in site conditions. For conditions and/or fuels other than standard, consult the Waukesha Engine Sales Engineering Department.
- 4) Fuel consumption based on ISO 3046/1-1995 with a +5% tolerance for commercial quality natural gas having a 900 Btu/ft³ saturated low heat valve

Waukesha WAUKESHA ENGINE DRESSER, INC. 1101 West St. Paul Avenue Waukesha, WI 53188-4999 Phone: (262) 547-3311 Fax: (262) 549-2795 waukeshaengine.dresser.com Bulletin 7005 0107

Consult your local Waukesha Distributor for system application assistance. The manufacturer reserves the right to change or modify without notice, the design or equipment specifications as herein set forth without incurring any obligation either with respect to equipment previously sold or in the process of construction except where otherwise specifically guaranteed by the manufacturer.

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating	
Criteria Pollutants and Greenhou	se Gases		
NO _x ^c 90 - 105% Load	4.08 E+00	В	
NO _x ^c <90% Load	8.47 E-01	В	
CO ^c 90 - 105% Load	3.17 E-01	С	
CO ^c <90% Load	5.57 E-01	В	
$\mathrm{CO_2}^{\mathrm{d}}$	1.10 E+02	А	
SO ₂ ^e	5.88 E-04	А	
TOC ^f	1.47 E+00	А	
Methane ^g	1.25 E+00	С	
VOC ^h	1.18 E-01	С	
PM10 (filterable) ⁱ	7.71 E-05	D	
PM2.5 (filterable) ⁱ	7.71 E-05	D	
PM Condensable ^j	9.91 E-03	D	
Trace Organic Compounds			
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е	
1,1,2-Trichloroethane ^k	<3.18 E-05	Е	
1,1-Dichloroethane	<2.36 E-05	Е	
1,2,3-Trimethylbenzene	2.30 E-05	D	
1,2,4-Trimethylbenzene	1.43 E-05	С	
1,2-Dichloroethane	<2.36 E-05	Е	
1,2-Dichloropropane	<2.69 E-05	Е	
1,3,5-Trimethylbenzene	3.38 E-05	D	
1,3-Butadiene ^k	2.67E-04	D	
1,3-Dichloropropene ^k	<2.64 E-05	Е	
2-Methylnaphthalene ^k	3.32 E-05	С	
2,2,4-Trimethylpentane ^k	2.50 E-04	С	
Acenaphthene ^k	1.25 E-06	С	

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)

Engine Exhaust Emissions Calculations

Unit Number: 3 Description: Scania DS11 Diesel Generator (Emergency)

Horsepower

250 hp

Nameplate hp

The data sheet shows the DS11 has a horsepower rating of 250+. Since the assocaited alternator is rated at 130 kW, the assumption of a site rating at 250 hp should be conservative.

Fuel Consumption

0.69 MMBtu/hr 138,000 Btu/gal 5.00 gal/hr 500 hr/yr 2,500 gal/yr 345 MMBtu/yr Hourly fuel consumption Field gas heating value Hourly fuel consumption Annual operating time Hourly fuel consumption Annual fuel consumption Mfg. data Nominal heat content MMBtu/hr x 1,000,000 / Btu/gal Harvest Four Corners, LLC gal/hr x hr/yr MMBtu/hr x hr/yr

Mfg. data

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
NO2	4.41	3.04	7.61E-01
CO	9.50E-01	6.56E-01	1.64E-01
VOC	3.60E-01	2.48E-01	6.21E-02
SO2	2.90E-01	2.00E-01	5.00E-02
TSP	3.10E-01	2.14E-01	5.35E-02
PM10	3.10E-01	2.14E-01	5.35E-02
PM2.5	3.10E-01	2.14E-01	5.35E-02
Acetaldehyde	7.67E-04	5.29E-04	1.32E-04
Benzene	9.33E-04	6.44E-04	1.61E-04
Formaldehyde	1.18E-03	8.14E-04	2.04E-04
Naphthalene	8.48E-05	5.85E-05	1.46E-05
Toluene	4.09E-04	2.82E-04	7.06E-05
Xylene	2.85E-04	1.97E-04	4.92E-05

Emission factors taken from AP-42, Tables 3.3-1 & 3.3-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.
^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene 💬	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.

Heater Exhaust PTE Emissions Calculations

Unit Number:	4 & 5
Description:	Fuel Gas Heater and Tank Heater

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumpt	ion
----------------------	-----

noumption	
0.30 MMBtu/hr	Capacity
333 scf/hr	Hourly fuel consumption
8,760 hr/yr	Annual operating time
2,628 MMBtu/yr	Annual fuel consumption
2.92 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Mfg. data MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 Nominal heat content

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	3.33E-02	1.46E-01
СО	84	2.80E-02	1.23E-01
VOC	5.5	1.83E-03	8.03E-03
SO2	0.6	2.00E-04	8.76E-04
TSP	7.60	2.53E-03	1.11E-02
PM10	7.60	2.53E-03	1.11E-02
PM2.5	7.60	2.53E-03	1.11E-02
Lead	5.00E-04	1.67E-07	7.30E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

<u>GRI-HAPCalc[®] 3.0</u> External Combustion Devices Report

Facility ID:	LOS MESTENIOS	Notes:
Operation Type:	COMPRESSOR STATION	
Facility Name:	LOS MESTENIOS COMPRESSOR	
User Name:	Harvest Four Corners, LLC	
Units of Measure:	U.S. STANDARD	

Note: Emissions less than 5.00E-09 tons (or tonnes) per year are considered insignificant and are treated as zero. These emissions are indicated on the report with a "0". Emissions between 5.00E-09 and 5.00E-05 tons (or tonnes) per year are represented on the report with "0.0000".

External Combustion Devices

Unit Name: HEATERS

Hours of Operation:	8,760	Yearly
Heat Input:	0.30	MMBtu/hr
Fuel Type:	NATURAL GA	AS
Device Type:	HEATER	
Emission Factor Set:	FIELD > EPA	> LITERATURE
Additional EF Set:	-NONE-	

Calculated Emissions (ton/yr)

	Chemical Name	Emissions	Emission Factor	Emission Factor Set
HA	APs_			
	7,12-Dimethylbenz(a)anthracene	0.0000	0.0000000157 lb/MMBtu	EPA
	Formaldehyde	0.0011	0.0008440090 lb/MMBtu	GRI Field
	Methanol	0.0013	0.0009636360 lb/MMBtu	GRI Field
	Acetaldehyde	0.0010	0.0007375920 lb/MMBtu	GRI Field
	1,3-Butadiene	0.0004	0.0003423350 lb/MMBtu	GRI Field
	Benzene	0.0010	0.0007480470 lb/MMBtu	GRI Field
	Toluene	0.0013	0.0010163310 lb/MMBtu	GRI Field
	Ethylbenzene	0.0028	0.0021128220 lb/MMBtu	GRI Field
	Xylenes(m,p,o)	0.0017	0.0013205140 lb/MMBtu	GRI Field
	2,2,4-Trimethylpentane	0.0037	0.0028417580 lb/MMBtu	GRI Field
	n-Hexane	0.0018	0.0014070660 lb/MMBtu	GRI Field
	Phenol	0.0000	0.0000001070 lb/MMBtu	GRI Field
	Styrene	0.0027	0.0020788960 lb/MMBtu	GRI Field
	Naphthalene	0.0000	0.0000005100 lb/MMBtu	GRI Field
	2-Methylnaphthalene	0.0000	0.0000001470 lb/MMBtu	GRI Field
	Acenaphthylene	0.0000	0.000000670 lb/MMBtu	GRI Field
	Biphenyl	0.0000	0.0000004730 lb/MMBtu	GRI Field
	Acenaphthene	0.0000	0.0000000900 lb/MMBtu	GRI Field
	Fluorene	0.0000	0.000000800 lb/MMBtu	GRI Field
	Anthracene	0.0000	0.000000870 lb/MMBtu	GRI Field
	Phenanthrene	0.0000	0.000000600 lb/MMBtu	GRI Field
	Fluoranthene	0.0000	0.000000900 lb/MMBtu	GRI Field
	Pyrene	0.0000	0.000000830 lb/MMBtu	GRI Field
	Benz(a)anthracene	0.0000	0.000000870 lb/MMBtu	GRI Field
	Chrysene	0.0000	0.0000001170 lb/MMBtu	GRI Field
	Benzo(a)pyrene	0.0000	0.0000000700 lb/MMBtu	GRI Field
01/08/2022	12:11:54	GRI-HAPCalc 3.0		Page 1 of 2

	0.0000	0.0000001500 16 (MMADA)	
Benzo(b)fluoranthene	0.0000	0.0000001500 lb/MMBtu	GRI Field
Benzo(k)fluoranthene	0.0000	0.0000007600 lb/MMBtu	GRI Field
Benzo(g,h,i)perylene	0.0000 0.0000	0.0000002600 lb/MMBtu 0.0000001200 lb/MMBtu	GRI Field GRI Field
Indeno(1,2,3-c,d)pyrene		0.0000001200 lb/MMBtu	GRI Field
Dibenz(a,h)anthracene	0.0000		EPA
	0.0000	0.0000004902 lb/MMBtu	EPA
Total	0.0188		
Criteria Pollutants			
VOC	0.0071	0.0053921569 lb/MMBtu	EPA
PM	0.0098	0.0074509804 lb/MMBtu	EPA
PM, Condensible	0.0073	0.0055882353 lb/MMBtu	EPA
PM, Filterable	0.0024	0.0018627451 lb/MMBtu	EPA
СО	0.0425	0.0323636360 lb/MMBtu	GRI Field
NMHC	0.0112	0.0085294118 lb/MMBtu	EPA
NOx	0.1275	0.0970167730 lb/MMBtu	GRI Field
SO2	0.0008	0.0005880000 lb/MMBtu	EPA
Other Pollutants			
Dichlorobenzene	0.0000	0.0000011765 lb/MMBtu	EPA
Methane	0.0138	0.0105212610 lb/MMBtu	GRI Field
Acetylene	0.0184	0.0140000000 lb/MMBtu	GRI Field
Ethylene	0.0012	0.0009476310 lb/MMBtu	GRI Field
Ethane	0.0035	0.0026312210 lb/MMBtu	GRI Field
Propylene	0.0031	0.0023454550 lb/MMBtu	GRI Field
Propane	0.0014	0.0010686280 lb/MMBtu	GRI Field
Isobutane	0.0019	0.0014640770 lb/MMBtu	GRI Field
Butane	0.0018	0.0013766990 lb/MMBtu	GRI Field
Cyclopentane	0.0015	0.0011304940 lb/MMBtu	GRI Field
Pentane	0.0046	0.0034671850 lb/MMBtu	GRI Field
n-Pentane	0.0019	0.0014221310 lb/MMBtu	GRI Field
Cyclohexane	0.0012	0.0009183830 lb/MMBtu	GRI Field
Methylcyclohexane	0.0029	0.0022011420 lb/MMBtu	GRI Field
n-Octane	0.0038	0.0028538830 lb/MMBtu	GRI Field
1,2,3-Trimethylbenzene	0.0045	0.0034224540 lb/MMBtu	GRI Field
1,2,4-Trimethylbenzene	0.0045	0.0034224540 lb/MMBtu	GRI Field
1,3,5-Trimethylbenzene	0.0045	0.0034224540 lb/MMBtu	GRI Field
n-Nonane	0.0048	0.0036604170 lb/MMBtu	GRI Field
CO2	154.5882	117.6470588235 lb/MMBtu	EPA

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO)FROM NATURAL GAS COMBUSTIONa

	NO _x ^b		(CO
Combustor Type (MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from $lb/10^{6}$ scf to $kg/10^{6}$ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from $1b/10^{6}$ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable. ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.
 ^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

1.4-5

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{d}	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

Turbine & Compressor Blowdown PTE Emissions Calculations

Unit Number: SSM

Description: Turbine, Compressor & Piping Associated With Station

Throughput

1,8

1	# of units
100	events/yr/unit
5,780	scf/event
12,400	scf/event
18,000	scf/yr

Number of units Blowdowns per year per unit Gas loss per blowdown (compressor) Gas loss per blowdown (turbine) Annual gas loss Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC # of units x events/yr/unit x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

Pollutants	Emission Factors, lb/scf	Uncontrolled, Emission Rates, tpy
VOC	1.307E-02	11.88
Benzene	2.533E-05	2.30E-02
Ethylbenzene	5.598E-07	5.09E-04
n-Hexane	2.951E-04	2.68E-01
Isooctane	7.398E-06	6.72E-03
Toluene	4.008E-05	3.64E-02
Xylene	6.718E-06	6.11E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	0.8632	44.01	1.002E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.4462	28.01	3.295E-04
Methane	78.7294	16.04	3.329E-02
Ethane	10.7901	30.07	8.554E-03
Propane	5.0734	44.09	5.897E-03
Isobutane	0.8940	58.12	1.370E-03
n-Butane	1.5609	58.12	2.392E-03
Isopentane	0.5577	72.15	1.061E-03
n-Pentane	0.4298	72.15	8.176E-04
Cyclopentane	0.0189	70.14	3.495E-05
n-Hexane	0.1299	86.17	2.951E-04
Cyclohexane	0.0389	84.16	8.631E-05
Other hexanes	0.2872	86.18	6.525E-04
Heptanes	0.0720	100.20	1.902E-04
Methylcyclohexane	0.0556	98.19	1.439E-04
Isooctane	0.0028	100.21	7.398E-06
Benzene	0.0123	78.11	2.533E-05
Toluene	0.0165	92.14	4.008E-05
Ethylbenzene	0.0002	106.17	5.598E-07
Xylenes	0.0024	106.17	6.718E-06
C8+ Heavies	0.0187	110.00	5.423E-05
Total	100.0001		
Total VOC			1.307E-02

Gas stream composition obtained from Los Mestenios extended gas analysis dated 05/06/2021Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.3 scf/lb-mole

Compressor Blowdown PTE Emissions Calculations

Unit Number: SSM

RICE Compressor & Piping Associated With Station Description:

Throughput

# of units	Number of units
events/yr/unit	Blowdowns per year per unit
scf/event	Gas loss per blowdown
scf/yr	Annual gas loss
	events/yr/unit scf/event

Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC # of units x events/yr/unit x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.307E-02	4.21
Benzene	2.533E-05	8.16E-03
Ethylbenzene	5.598E-07	1.80E-04
n-Hexane	2.951E-04	9.51E-02
Isooctane	7.398E-06	2.38E-03
Toluene	4.008E-05	1.29E-02
Xylene	6.718E-06	2.16E-03

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	0.8632	44.01	1.002E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.4462	28.01	3.295E-04
Methane	78.7294	16.04	3.329E-02
Ethane	10.7901	30.07	8.554E-03
Propane	5.0734	44.09	5.897E-03
Isobutane	0.8940	58.12	1.370E-03
n-Butane	1.5609	58.12	2.392E-03
Isopentane	0.5577	72.15	1.061E-03
n-Pentane	0.4298	72.15	8.176E-04
Cyclopentane	0.0189	70.14	3.495E-05
n-Hexane	0.1299	86.17	2.951E-04
Cyclohexane	0.0389	84.16	8.631E-05
Other hexanes	0.2872	86.18	6.525E-04
Heptanes	0.0720	100.20	1.902E-04
Methylcyclohexane	0.0556	98.19	1.439E-04
Isooctane	0.0028	100.21	7.398E-06
Benzene	0.0123	78.11	2.533E-05
Toluene	0.0165	92.14	4.008E-05
Ethylbenzene	0.0002	106.17	5.598E-07
Xylenes	0.0024	106.17	6.718E-06
C8+ Heavies	0.0187	110.00	5.423E-05
Total	100.0001		
Total VOC			1.307E-02

Gas stream composition obtained from Los Mestenios extended gas analysis dated 05/06/2021 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.3 scf/lb-mole

Description:	Los Mestenios	Company:	HARVEST MIDSTREAM
Field: Meter Number:		WorkOrder: GPA Method:	GPA 2286
Analysis Date/Time:	5/7/2021 11:17:		GPA 2200
Date Sampled:	5/6/2021 11.17.	Analyst Initials:	РК
Sample Temperature:	60	Instrument:	SRI 8610
Sample Pressure:	66	instrument.	511 6010
Sample Pressure.	00		
GRI GlyCalc Information			
Component	Mol%	Normalized Weight %	
Carbon Dioxide	0.8632	1.7763	
Hydrogen Sulfide	N/R	0	
Nitrogen	0.4462	0.5845	
Methane	78.7294	59.0586	
Ethane	10.7901	15.1712	
Propane	5.0734	10.4609	
Iso-Butane	0.894	2.4297	
n-Butane	1.5609	4.2421	
Iso-Pentane	0.5577	1.8815	
n-Pentane	0.4298	1.45	
Cyclopentane	0.0189	0.062	
n-Hexane	0.1299	0.5483	
Cyclohexane	0.0389	0.1531	
Other Hexanes	0.2872	1.3456	
Heptanes	0.072	0.3373	
Methylcyclohexane	0.0556	0.2553	
2 2 4 Trimethylpentane	0.0028	0.015	
Benzene	0.0123	0.0449	
Toluene	0.0165	0.0711	
Ethylbenzene	0.0002	0.001	
Xylenes	0.0024	0.0119	
C8+ Heavies	0.0187	0.0999	
Subtotal	100.0001		
Oxygen	N/R		
Subtotal	100.0001	100	
Calculated Molecular Weight		21.3865	

2030 Afton Place Farmington, NM 87401 (505) 325-6622

Analysis No: HM2021049 Cust No: 33700-10375

Sampled by (CO): Harvest Mid.

		Well/Lease Information		
Customer Name:	HARVEST MIDSTREAM		Source:	METER RUN
Well Name:	Los Mestenios CDP		Well Flowing:	Y
County/State:			Pressure:	80 PSIG
Location:			Flow Temp:	60 DEG. F
Lease/PA/CA:			Ambient Temp:	72 DEG. F
Formation:			Flow Rate:	MCF/D
Cust. Stn. No.:			Sample Method:	Purge & Fill
			Sample Date:	05/06/2021
			Sample Time:	2.10 PM
			Sampled By:	

Heat Trace: N Remarks: Calculated

Calculated Molecular Weight = 21.3865

Analysis						
Component:	Mole%:	Unormalized %:	**GPM:	*BTU:	*SP Gravity:	
Nitrogen	0.4462	0.4456	0.0490	0.00	0.0043	
CO2	0.8632	0.8621	0.1480	0.00	0.0131	
Methane	78.7294	78.6321	13.3930	795.17	0.4361	
Ethane	10.7901	10.7768	2.8960	190.95	0.1120	
Propane	5.0734	5.0671	1.4030	127.65	0.0772	
Iso-Butane	0.8940	0.8929	0.2940	29.07	0.0179	
N-Butane	1.5609	1.5590	0.4940	50.92	0.0313	
Neopentane 2,2 dmc3	0.0000	0.0000	0.0000	0.00	0.0000	
I-Pentane	0.5577	0.5570	0.2050	22.31	0.0139	
N-Pentane	0.4298	0.4293	0.1560	17.23	0.0107	
Neohexane	0.0117	N/R	0.0050	0.55	0.0003	
2-3-Dimethylbutane	0.0181	N/R	0.0070	0.86	0.0005	
Cyclopentane	0.0189	N/R	0.0060	0.71	0.0005	
2-Methylpentane	0.1220	N/R	0.0510	5.79	0.0036	
3-Methylpentane	0.0464	N/R	0.0190	2.20	0.0014	
C6	0.1299	0.6545	0.0540	6.18	0.0039	
Methylcyclopentane	0.0890	N/R	0.0320	4.01	0.0026	
Benzene	0.0123	N/R	0.0030	0.46	0.0003	
Cyclohexane	0.0389	N/R	0.0130	1.74	0.0011	
2-Methylhexane	0.0143	N/R	0.0070	0.78	0.0005	
3-Methylhexane	0.0156	N/R	0.0070	0.85	0.0005	
2-2-4-Trimethylpentane	0.0028	N/R	0.0010	0.17	0.0001	
i-heptanes	0.0091	N/R	0.0040	0.48	0.0003	
Heptane	0.0330	N/R	0.0150	1.82	0.0011	

Methylcyclohexane	0.0556	N/R	0.0220	2.90	0.0019
Toluene	0.0165	N/R	0.0060	0.74	0.0005
2-Methylheptane	0.0064	N/R	0.0030	0.40	0.0003
4-Methylheptane	0.0033	N/R	0.0020	0.20	0.0001
i-Octanes	0.0026	N/R	0.0010	0.16	0.0001
Octane	0.0056	N/R	0.0030	0.35	0.0002
Ethylbenzene	0.0002	N/R	0.0000	0.01	0.0000
m, p Xylene	0.0022	N/R	0.0010	0.11	0.0001
o Xylene (& 2,2,4 tmc7)	0.0002	N/R	0.0000	0.01	0.0000
i-C9	0.0002	N/R	0.0000	0.01	0.0000
C9	0.0003	N/R	0.0000	0.02	0.0000
i-C10	0.0001	N/R	0.0000	0.01	0.0000
C10	0.0001	N/R	0.0000	0.01	0.0000
i-C11	0.0000	N/R	0.0000	0.00	0.0000
C11	0.0001	N/R	0.0000	0.01	0.0000
C12P	0.0000	N/R	0.0000	0.00	0.0000
Total	100.00	99.876	19.300	1264.86	0.7368

* @ 14.730 PSIA DRY & UNCORRECTED FOR COMPRESSIBILITY

**@ 14.730 PSIA & 60 DEG. F.

COMPRESSIBLITY FACTOR	(1/Z):	1.0037	CYLINDER #:	16
BTU/CU.FT IDEAL:		1267.8	CYLINDER PRESSURE:	66 PSIG
BTU/CU.FT (DRY) CORRECTED FOR (1/Z):		1272.5	ANALYSIS DATE:	05/07/2021
BTU/CU.FT (WET) CORRECTED F	OR (1/Z):	1250.4	ANALYIS TIME:	11:17:24 AM
DRY BTU @ 15.025:		1298.0	ANALYSIS RUN BY:	PATRICIA KING
REAL SPECIFIC GRAVITY:		0.7392		

GPM, BTU, and SPG calculations as shown above are based on current GPA constants. GPA Standard: GPA 2286-14 GC: SRI Instruments 8610 GC Method: C12+BTEX Gas

Equipment Leaks PTE Emissions Calculations

Unit Number: F1 Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

	Number of	Emission	Emission	Uncontro	olled TOC
Equipment	Components,	Factors,	Factors,	Emissio	on Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	315	0.0045	0.0099	3.12	13.66
Connectors	263	0.0002	0.0004	0.12	0.51
Pump Seals	0	0.0024	0.0053	0.00	0.00
Compressor Seals	32	0.0088	0.0194	0.62	2.71
Pressure Relief Valves	19	0.0088	0.0194	0.37	1.61
Open-Ended Lines	88	0.0020	0.0044	0.39	1.70
То	otal			4.61	20.19

Number of components based on the numbers of compressors and dehydrators at the station (see next page) Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg

Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

	Mole	Molecular	Component	Weight Percent		
Components	Percents,	Weights,	Component Weights,	of TOC,	Lincontrolled E	mission Rates,
Components	%	lb/lb-mole	lb/lb-mole	% 01100,	pph	,
Carbon dioxide	0.8632	44.010	SIOTI-CINCI	70	ррп	tpy
Hydrogen sulfide	0.0000	34.070				
Nitrogen	0.4462	28.013				
Methane	78.7294	16.043	1263.056	60.619		
Ethane	10.7901	30.070	324.458	15.572		
Propane	5.0734	44.097	223.722	10.737	4.95E-01	2.17E+00
Isobutane	0.8940	58.123	51.962	2.494	1.15E-01	5.03E-01
n-Butane	1.5609	58.123	90.724	4.354	2.01E-01	8.79E-01
Isopentane	0.5577	72.150	40.238	1.931	8.90E-02	3.90E-01
n-Pentane	0.4298	72.150	31.010	1.488	6.86E-02	3.00E-01
Cyclopentane	0.0189	70.134	1.326	0.064	2.93E-03	1.28E-02
n-Hexane	0.1299	86.177	11.194	0.537	2.48E-02	1.08E-01
Cyclohexane	0.0389	84.161	3.274	0.157	7.24E-03	3.17E-02
Other hexanes	0.2872	86.177	24.750	1.188	5.47E-02	2.40E-01
Heptanes	0.0720	100.204	7.215	0.346	1.60E-02	6.99E-02
Methylcyclohexane	0.0556	98.188	5.459	0.262	1.21E-02	5.29E-02
Isooctane	0.0028	114.231	0.320	0.015	7.07E-04	3.10E-03
Benzene	0.0123	78.114	0.961	0.046	2.13E-03	9.31E-03
Toluene	0.0165	92.141	1.520	0.073	3.36E-03	1.47E-02
Ethylbenzene	0.0002	106.167	0.021	0.001	4.70E-05	2.06E-04
Xylenes	0.0024	106.167	0.255	0.012	5.64E-04	2.47E-03
C8+ Heavies	0.0187	114.231	2.136	0.103	4.72E-03	2.07E-02
Total	100.0001		2083.601			
Total VOC				23.809	1.10	4.81

Gas stream composition obtained from Los Mestenios extended gas analysis dated 05/06/2021

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Uncontrolled Emission Rates (pph) = Total Uncontrolled TOC Emission Rate (pph) x (% / 100)

Uncontrolled Emission Rates (tpy) = Total Uncontrolled TOC Emission Rate (tpy) x (% / 100)

Equipment Leaks PTE Emissions Calculations

Unit Number: F1

Description: Valves, Connectors, Seals & Lines

Number of Compression Units at the Facility:2Number of Dehydrators at the Facility:0

			Equipme	ent Count			Ins	strument Co	unt
					Pressure				
Process Equipment Description			Pump	Compressor	Relief				
	Valves	Connectors	Seals	Seals	Valves	Open-end	Flow	Level	Pressure
Station inlet, meter run to pulsation dampener	17	14	0	0	1	13	3	0	3
Pulsation dampener	12	8	0	0	0	2	0	4	1
Compressor suction header	7	4	0	0	0	3	0	0	1
Suction header feed to instrument gas header	3	1	0	0	0	1	0	0	0
Compressor discharge header and bypass to station discharge	6	5	0	0	0	3	0	1	1
Compressor discharge header and suction header bypass lines	4	2	0	0	0	2	0	0	1
Fuel gas header	2	2	0	0	1	2	0	0	1
Instrument gas header	2	2	0	0	1	2	0	0	0
Station discharge header	9	5	0	0	1	6	0	0	2
Fuel gas recovery header	2	2	0	0	1	2	0	0	0
Fuel gas feed and filter loop	15	9	0	0	0	1	0	4	1
Instrument gas feed and filter loop	9	11	0	0	0	3	0	0	0
Produced water storage tank	1	0	0	0	0	1	0	1	0
ESD panel	12	0	0	0	0	0	0	0	0
Starting gas header	6	2	0	0	1	3	0	0	0
Hot gas header	2	2	0	0	0	2	0	0	0
Volume bottle lop	12	4	0	24	1	2	0	0	1
Components from Compressors	88	118	0	8	12	22	0	8	18
Components from dehydrators	0	0	0	0	0	0	0	0	0
Total		191	0	32	19	70	3	18	30
Adjusted Total	315	263	0	32	19	88			

The following additions are included in the Adjusted Total:

1 valve is added for each open end line

2 connectors are added for each flow meter

2 valves, 2 connectors and 1 open end line are added for each level gauge

1 connector is added for each pressure gauge

The component count is based on an evaluation of the Sim Mesa Compressor Station (two stage compression)

Equipment Type	Servicea	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

Truck Loading (Condensate) PTE Emissions Calculations

Unit Number: L1 Description: Truck Loading

Emission Factor

0.6	Saturation factor, S	AP-42, Table 5.2-1 (submerged loading & dedicated service)
2.28 psia	True vapor pressure of liquid, P	TANKS 4.0 output file
78.1 lb/lb-mole	Molecular weight of vapors, M	TANKS 4.0 output file
65 °F	Temperature of liquid	TANKS 4.0 output file
524.6 °R	Temperature of liquid, T	°F + 459.67
2.54 lb/10 ³ gal	Emission factor, L	AP-42, Section 5.2, Equation 1
		L =12.46 (SPM/T)

Production Rate

929.92 10^3 gal/yr

Maximum annual production rate

Harvest Four Corners, LLC (= 21,000 bbl/yr, which is approx. max historical throughput plus 10%)

Steady-State Emission Rates

	Emission		
Pollutant	Rates,		
	tpy		
VOC	1.18		

Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

	Percent	Emission
Pollutants	of VOC,	Rates,
	%	tpy
Benzene	0.50	5.84E-03
Ethylbenzene	0.03	3.21E-04
n-Hexane	5.40	6.37E-02
Isooctane	0.10	1.17E-03
Toluene	0.07	7.68E-04
m-Xylene	0.16	1.86E-03

Liquid percent of VOC calculated from the TANKS 4.0 results

Percent of VOC (%) = 100 x Pollutant Emission Rate (lb/yr) / Total VOC Emission Rate (lb/yr) Emission Rates (tpy) = VOC Emission Rate (tpy) x (% / 100)

Truck Loading (Produced Water) PTE Emissions Calculations

Unit Number: L2 Description: Truck Loading

Emission Factor

0.6	Saturation factor, S	AP-42, Table 5.2-1 (submerged loading & dedicated service)
0.3045 psia (average)	True vapor pressure of liquid, P	Estimated using Antoine's Equation (see calculations below)
18.02 lb/lb-mole	Molecular weight of vapors, M	TANKS 4.0 Database
65 °F (average)	Temperature of liquid	Estimated (see calculations below)
524.67 °R (average)	Temperature of liquid, T	°F + 459.67
0.08 lb/10 ³ gal (average)	Emission factor, L	AP-42, Section 5.2, $L = 12.46 \frac{SPM}{T}$

Production Rate

35.28 10^3 gal/yr

Maximum annual production rate

Harvest Four Corners, LLC

Steady-State Emission Rates

Pollutant	Emission Rates,	
	tpy	
VOC	1.38E-03	
Uncontrolled En	nission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/to

Pollutants	Mass Fraction	Emission Rates, tpy	
Benzene	0.0267	3.69E-07	
Ethylbenzene	0.0027	3.69E-08	
n-Hexane	0.0840	1.16E-06	
Toluene	0.0344	4.74E-07	
m-Xylene	0.0229	3.16E-07	

HAP mass fractions are estimated from the produced water tank emission factors HAP Mass Fraction = HAP Emission Factor (lb/bbl) / VOC Emission Factor (lb/bbl) Emission Rates (tpy) = VOC Emission Rate (tpy) x HAP Mass Fraction

Vapor Pressure of Produced Water:

It is estimated that the true vapor pressure of produced water is approximately equal to the true vapor pressure of pure water. An estimate of the true vapor pressure for water is calculated using Antoine's equation (see AP-42, Section 7.1, Equation 1-25).

<u>Maximum:</u>		Average:	
Temperature =	77 °F	Temperature =	<mark>65</mark> °F
log P = A - (B / (C + T))		log P = A - (B / (C + T))	
A = 8.07131 B = 1730.63 C = 233.426 T = P = mmHg	25.00 °C	A = 8.07131 B = 1730.63 C = 233.426 T = P = mmHg	18.33 °C
P = 10^(A - (B / (C + T))	P = 10^(A - (B / (C + T)))
P = P =	23.69 mmHg 0.4581 psi	P = P =	15.75 mmHg 0.3045 psi

Note: 760 mmHg = 14.7 psia

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

 $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Figure 7.1-5, Figure 7.1-6, and Table 7.1-2)
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Table 7.1-2)
- T = temperature of bulk liquid loaded, ${}^{\circ}\bar{R}$ (${}^{\circ}\bar{F}$ + 460)

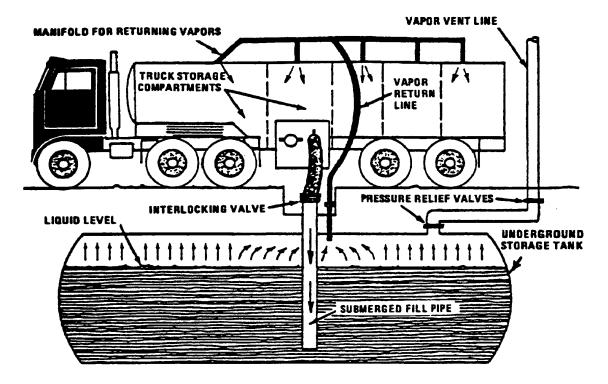


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks not passing one of these annual leak tests⁶.

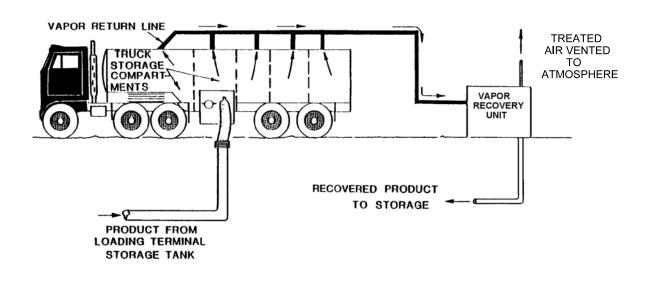


Figure 5.2-6. Tank truck loading with vapor recovery.

Storage Tank PTE Emissions Data and Calculations

Unit Number: T1 & T2

Description: Condensate Storage Tanks

Emission Rates

Source/Pollutants	Working/Brea	athing Losses, tpy	Flash Losses, tpy	Uncontrolled Emission Rates, tpy	10% Safety Factor tpy
T1 VOC Benzene Ethylbenzene n-Hexane Isooctane Toluene Xylene	6,540.36 37.76 2.07 412.11 7.53 4.96 12.01	3.27 1.89E-02 1.04E-03 2.06E-01 3.77E-03 2.48E-03 6.01E-03	44.75 3.25E-01 1.62E-02 2.60 4.56E-02 3.81E-02 7.99E-02	48.02 3.44E-01 1.72E-02 2.81 4.94E-02 4.06E-02 8.59E-02	52.82 3.79E-01 1.89E-02 3.09 5.43E-02 4.46E-02 9.45E-02
T2 VOC Benzene Ethylbenzene n-Hexane Isooctane Toluene Xylene	5,608.34 32.38 1.78 353.38 6.46 4.26 10.30	2.80 1.62E-02 8.90E-04 1.77E-01 3.23E-03 2.13E-03 5.15E-03		2.80 1.62E-02 8.90E-04 1.77E-01 3.23E-03 2.13E-03 5.15E-03	

Working/breathing losses taken from TANKS 4.0 results

Flash VOC emissions taken from VMGSim results

Flash HAP emissions calculated from the flash VOC emissions and the weight % HAP (calculated in the table below) Unit T2 does not have flash emissions because it is an overflow tank for Unit T1. All flashing occurs in Unit T1.

Storage Tank PTE Emissions Data and Calculations

Unit Number: T1 & T2

Description: Condensate Storage Tanks

Flash Emissions Composition (To Determine HAP Emissions)

	Mole	Molecular	Component	Weight
Components	Percents,	Weights,	Weights,	Percent,
	%	lb/lb-mole	lb/lb-mole	%
Carbon dioxide	0.1231	44.010		
Hydrogen sulfide	0.0000	34.070		
Nitrogen	1.4810	28.013		
Water	1.9137	18.015		
Methane	58.8518	16.043		
Ethane	9.5652	30.070		
Propane	3.1622	44.097	139.445	7.752
Isobutane	4.8689	58.123	282.998	15.732
n-Butane	9.3180	58.123	541.590	30.108
Isopentane	4.5581	72.150	328.870	18.282
n-Pentane	3.0399	72.150	219.325	12.193
Cyclopentane	0.0158	70.134	1.107	0.062
n-Hexane	1.2128	86.177	104.513	5.810
Cyclohexane	0.4511	84.161	37.966	2.111
Other hexanes	0.0000	86.177	0.000	0.000
Heptanes	0.6055	100.204	60.677	3.373
Methylcyclohexane	0.4106	98.188	40.317	2.241
Isooctane	0.0160	114.231	1.833	0.102
Benzene	0.1674	78.114	13.074	0.727
Toluene	0.0166	92.141	1.532	0.085
Ethylbenzene	0.0061	106.167	0.651	0.036
Xylenes	0.0303	106.167	3.212	0.179
n-Octane	0.1544	114.232	17.643	0.981
n-Nonane	0.0262	128.259	3.355	0.187
n-Decane	0.0051	142.286	0.719	0.040
Total	100.0000		1798.826	100.000

Gas stream composition obtained from VGMSym output

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Storage Tank PTE Emissions Data and Calculations

Unit Number: T1 & T2

Description: Condensate Storage Tanks

Condensate Composition (To Determine Working/Breathing Losses)

	Mole	Molecular	Component	Weight
Components	Percents,	Weights,	Weights,	Percent,
	%	lb/lb-mole	lb/lb-mole	%
Carbon dioxide	0.0016	44.010		
Hydrogen sulfide	0.0000	34.070		
Nitrogen	0.0016	28.013		
Water	10.3467	18.015	186.3954	1.9609
Methane	0.2398	16.043	3.8476	0.0405
Ethane	0.2647	30.070	7.9592	0.0837
Propane	0.3284	44.097	14.4797	0.1523
Isobutane	1.3530	58.123	78.6407	0.8273
n-Butane	4.0043	58.123	232.7417	2.4485
Isopentane	5.2914	72.150	381.7734	4.0163
n-Pentane	4.7618	72.150	343.5631	3.6143
Cyclopentane	0.0479	70.134	3.3588	0.0353
n-Hexane	7.2009	86.177	620.5560	6.5283
Cyclohexane	4.2312	84.161	356.1035	3.7463
Other hexanes	0.0000	86.177	0.0000	0.0000
Heptanes	12.0651	100.204	1208.9690	12.7185
Methylcyclohexane	9.4637	98.188	929.2256	9.7756
Isooctane	0.3125	114.231	35.7007	0.3756
Benzene	1.1780	78.114	92.0162	0.9680
Toluene	0.4530	92.141	41.7421	0.4391
Ethylbenzene	0.4864	106.167	51.6357	0.5432
Xylenes	3.3752	106.167	358.3340	3.7697
n-Octane	10.1150	114.232	1155.4546	12.1555
n-Nonane	5.6876	128.259	729.4821	7.6743
n-Decane	18.7903	142.286	2673.5942	28.1266
Total	100.0000		9505.5736	100.0000

Gas stream composition obtained from VGMSym output

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

In TANKS 4, the methane, ethane, and propane percentages are included with isobutane and n-butane (an even distribution)

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	Los Mestenios - T1 - Condensate PTE
City:	Gavilan
State:	New Mexico
Company:	Harvest Four Corners, LLC
Type of Tank:	Vertical Fixed Roof Tank
Description:	490 Barrel Condensate Storage Tank
Tank Dimensions	
Shell Height (ft):	16.00
Diameter (ft):	14.75
Liquid Height (ft) :	15.00
Avg. Liquid Height (ft):	7.50
Volume (gallons):	19,173.00
Turnovers:	48.50
Net Throughput(gal/yr):	929,922.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade: Shell Condition	Gray/Medium Good
Roof Color/Shade:	0000
Roof Condition:	Gray/Medium Good
Roof Condition.	Good
Roof Characteristics	
Type:	Dome
Height (ft)	0.00
Radius (ft) (Dome Roof)	14.75
	14.75
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03
	0.00

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Los Mestenios - T1 - Condensate PTE - Vertical Fixed Roof Tank Gavilan, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
fixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	3.4523	2.6161	4.3471	66.3334			95.42	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0038	0.0011	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0097	0.0058	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						29.9357	23.3576	34.6684	58.1230	0.0259	0.3227	58.12	Option 1: VP60 = 26.1 VP70 = 31.31
Cyclohexane						1.4738	1.0254	2.0729	84.1600	0.0375	0.0230	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Cyclopentane						4.9596	3.6370	6.6394	70.1300	0.0004	0.0007	70.13	Option 1: VP60 = 4.177 VP70 = 5.24
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.2813	0.0046	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.1272	0.0403	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.0653	0.0628	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Iso-Butane						43.3083	34.4026	53.8185	58.1230	0.0097	0.1743	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0402	0.1985	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Methylcyclohexane						0.6886	0.4673	0.9913	98.1800	0.0978	0.0280	98.18	Option 2: A=6.823, B=1270.763, C=221.42
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.0767	0.0025	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.1216	0.0090	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0361	0.1209	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0044	0.0008	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.3402	0.2160	0.5229	18.0150	0.0196	0.0028	18.02	Option 1: VP60 = .263 VP70 = .3679
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0377	0.0018	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Los Mestenios - T1 - Condensate PTE - Vertical Fixed Roof Tank Gavilan, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	2,577.2156
Vapor Space Volume (cu ft):	1,625.2961
Vapor Density (lb/cu ft):	0.0405
Vapor Space Expansion Factor:	0.2940
Vented Vapor Saturation Factor:	0.3649
vented vapor bataration racior.	0.5045
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,625.2961
Tank Diameter (ft):	14.7500
Vapor Space Outage (ft):	9.5117
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	1.0117
Roof Outage (Dome Roof)	
Roof Outage (ft):	1.0117
Dome Radius (ft):	14,7500
Shell Radius (ft):	7.3750
Man an Dan aite	
Vapor Density Vapor Density (lb/cu ft):	0.0405
Vapor Molecular Weight (lb/lb-mole):	66.3334
Vapor Pressure at Daily Average Liquid	00.0004
Surface Temperature (psia):	3,4523
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	00.1012
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2940
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.7309
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	0.0000
Surface Temperature (psia):	3.4523
Vapor Pressure at Daily Minimum Liquid	0.1020
Surface Temperature (psia):	2.6161
Vapor Pressure at Daily Maximum Liquid	2.0101
Surface Temperature (psia):	4.3471
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
	21.3250
Vented Vapor Saturation Factor	0.2640
Vented Vapor Saturation Factor:	0.3649
Vapor Pressure at Daily Average Liquid:	0.4500
Surface Temperature (psia):	3.4523
Vapor Space Outage (ft):	9.5117
Working Losses (lb):	3,981.3785
	0,001.0700

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	66.3334
Surface Temperature (psia):	3.4523
Annual Net Throughput (gal/yr.):	929,922.0000
Annual Turnovers:	48.5000
Turnover Factor:	0.7852
Maximum Liquid Volume (gal):	19,173.0000
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	14.7500
Working Loss Product Factor:	1.0000
Total Losses (lb):	6,558.5942

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Los Mestenios - T1 - Condensate PTE - Vertical Fixed Roof Tank Gavilan, New Mexico

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Condensate	3,981.38	2,577.22	6,558.59					
Iso-Butane	693.82	449.12	1,142.94					
Butane (-n)	1,284.65	831.58	2,116.23					
Isopentane	790.47	511.69	1,302.16					
Pentane (-n)	481.52	311.70	793.22					
Cyclopentane	2.90	1.88	4.78					
Hexane (-n)	250.17	161.94	412.11					
Cyclohexane	91.60	59.29	150.89					
Heptane (-n)	160.36	103.80	264.16					
Methylcyclohexane	111.67	72.28	183.95					
2,2,4-Trimethylpentane (isooctane)	4.57	2.96	7.53					
Benzene	22.92	14.84	37.76					
Toluene	3.01	1.95	4.96					
Ethylbenzene	1.26	0.81	2.07					
Xylenes (mixed isomers)	7.29	4.72	12.01					
Octane (-n)	35.68	23.10	58.78					
Nonane (-n)	9.98	6.46	16.44					
Decane (-n)	18.43	11.93	30.37					
Water	11.07	7.16	18.23					

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Los Mestenios - T2 - Condensate PTE Gavilan New Mexico Harvest Four Corners, LLC Vertical Fixed Roof Tank 400 Barrel Condensate Storage Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	16.00 13.50 15.00 7.50 16,061.00 57.90 929,922.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Good Gray/Medium Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 13.50
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Los Mestenios - T2 - Condensate PTE - Vertical Fixed Roof Tank Gavilan, New Mexico

			aily Liquid S perature (d		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/ixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	3.4523	2.6161	4.3471	66.3334			95.42	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0038	0.0011	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0097	0.0058	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						29.9357	23.3576	34.6684	58.1230	0.0259	0.3227	58.12	Option 1: VP60 = 26.1 VP70 = 31.31
Cyclohexane						1.4738	1.0254	2.0729	84.1600	0.0375	0.0230	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Cyclopentane						4.9596	3.6370	6.6394	70.1300	0.0004	0.0007	70.13	Option 1: VP60 = 4.177 VP70 = 5.24
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.2813	0.0046	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.1272	0.0403	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.0653	0.0628	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Iso-Butane						43.3083	34.4026	53.8185	58.1230	0.0097	0.1743	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0402	0.1985	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Methylcyclohexane						0.6886	0.4673	0.9913	98.1800	0.0978	0.0280	98.18	Option 2: A=6.823, B=1270.763, C=221.42
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.0767	0.0025	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.1216	0.0090	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0361	0.1209	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0044	0.0008	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.3402	0.2160	0.5229	18.0150	0.0196	0.0028	18.02	Option 1: VP60 = .263 VP70 = .3679
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0377	0.0018	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

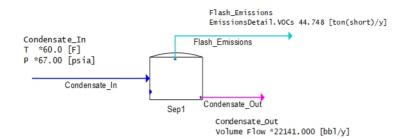
Los Mestenios - T2 - Condensate PTE - Vertical Fixed Roof Tank Gavilan, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	2,151.7664
Vapor Space Volume (cu ft):	1,349.2223
Vapor Density (lb/cu ft):	0.0405
Vapor Space Expansion Factor:	0.2940
Vented Vapor Saturation Factor:	0.3670
Volled Vapor Catalation Factor.	0.0070
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,349.2223
Tank Diameter (ft):	13.5000
Vapor Space Outage (ft):	9.4260
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	0.9260
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.9260
Dome Radius (ft):	13.5000
Shell Radius (ft):	6.7500
Vapor Density Vapor Density (lb/cu ft):	0.0405
Vapor Density (ib/cd it). Vapor Molecular Weight (ib/lb-mole):	66.3334
	00.3334
Vapor Pressure at Daily Average Liquid	2 4502
Surface Temperature (psia):	3.4523
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	10 701
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2940
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.7309
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4523
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.6161
Vapor Pressure at Daily Maximum Liquid	2.0.01
Surface Temperature (psia):	4.3471
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
	27.9250
Daily Ambient Temp. Range (deg. R):	21.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3670
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.4523
Vapor Space Outage (ft):	9.4260
- · ·	
Working Losses (Ib):	3,472.2012

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	66.3334	
Surface Temperature (psia):	3.4523	
Annual Net Throughput (gal/yr.):	929,922.0000	
Annual Turnovers:	57.9000	
Turnover Factor:	0.6848	
Maximum Liquid Volume (gal):	16,061.0000	
Maximum Liquid Height (ft):	15.0000	
Tank Diameter (ft):	13.5000	
Working Loss Product Factor:	1.0000	
Total Losses (lb):	5,623.9676	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual


Los Mestenios - T2 - Condensate PTE - Vertical Fixed Roof Tank Gavilan, New Mexico

	Losses(lbs)				
Components	Working Loss Breathing Loss Total Emission				
Condensate	3,472.20	2,151.77	5,623.97		
Iso-Butane	605.09	374.98	980.06		
Butane (-n)	1,120.36	694.30	1,814.66		
Isopentane	689.38	427.22	1,116.60		
Pentane (-n)	419.94	260.24	680.18		
Cyclopentane	2.53	1.57	4.10		
Hexane (-n)	218.18	135.21	353.38		
Cyclohexane	79.88	49.50	129.39		
Heptane (-n)	139.85	86.67	226.52		
Methylcyclohexane	97.39	60.35	157.74		
2,2,4-Trimethylpentane (isooctane)	3.99	2.47	6.46		
Benzene	19.99	12.39	32.38		
Toluene	2.63	1.63	4.26		
Ethylbenzene	1.10	0.68	1.78		
Xylenes (mixed isomers)	6.36	3.94	10.30		
Octane (-n)	31.12	19.28	50.40		
Nonane (-n)	8.70	5.39	14.10		
Decane (-n)	16.08	9.96	26.04		
Water	9.65	5.98	15.63		

Simulation Report			
	Symmetry		
File Name: Company: Customer: Project: Job No: Prepared By:	Los Mestenios Emissions Flash Model 12.21.2021 VMG, a Schlumberger Technology		
Report Date:	Tuesday, December 21, 2021		
Unit Set:	Field		
File: U:\Environmental\Lo:	s Mestenios Emissions Flash Model 12.21.2021.vsym		
Symmetry			
	Main Flowsheet		
Material Stream (3			
<u>2ph Separator (1)</u>			

*Bold face throughout the report denotes specified values.

*Italic face throughout the report denotes recycle values.

🖾 Symmetry

/Condensate_In (Material Stream)				
Thermo Model: APRNGL2		-	-	
	Conne	ections		
	Materi	al Inlets		
Connection			Up Stream Unit Op	
In <disconne< td=""><td>cted></td><td></td><td></td><td></td></disconne<>	cted>			
	Materia	l Outlets		
Connection			Down Stream Unit Op	
Out Sep1.In0				
	Allocation / Pro	oduct Allocation		
Auto Calculate	False	Is Up To Date		False
Status	Y?No Results			
		ım Results		
			Lia	Lig1
Phase Frac [Fraction]	Bulk 1.00	Vap 0.0390	Liq0 0.8649	Liq1 0.0962
T [F]	60.0	60.0	60.0	
P [psia]	67.00	67.00	67.00	
P [psia] Mole Flow [lbmol/h]	7.04	0.27		
Mass Flow [lb/h]	657.72	5.59	6.09 639.94	0.68
Volume Flow [ft3/s]	0.010	0.006	0.004	0.000
Fraction [Fraction]	0.010	0.006	0.004	0.000
NITROGEN	0.0012	0.0273	1.69E-04	1.39E-06
METHANE	0.0012	0.0273	0.0195	9.28E-05
CARBON DIOXIDE	1.14E-04	0.0011	8.10E-05	3.03E-06
ETHANE	0.0102	0.0590	0.0091	9.68E-06
PROPANE	0.0056		0.0060	1.15E-06
ISOBUTANE	0.0050	0.0123	0.0184	7.47E-07
n-BUTANE	0.0443	0.0218	0.0503	1.96E-06
ISOPENTANE	0.0523	0.0098	0.0601	5.01E-07
n-PENTANE	0.0462	0.0065	0.0532	4.95E-07
CYCLOPENTANE	4.53E-04	3.28E-05	5.22E-04	1.90E-08
n-HEXANE	0.0672	0.0025	0.0776	1.89E-07
METHYLCYCLOHEXANE	0.0873	8.63E-04	0.1009	3.17E-07
2,2,4-TRIMETHYLPENTANE	0.0029	3.38E-05	0.0033	8.35E-10
BENZENE	0.0110	3.47E-04	0.0127	5.87E-06
CYCLOHEXANE	0.0393	9.37E-04	0.0454	5.73E-07
n-HEPTANE	0.1114	0.0013	0.1288	6.67E-08
TOLUENE	0.0042	3.47E-05	0.0048	5.99E-07
n-OCTANE	0.0931	3.30E-04	0.1076	1.08E-08
ETHYLBENZENE	0.0045	1.30E-05	0.0052	
m-XYLENE	0.0214		0.0247	7.31E-07
o-XYLENE	0.0096		0.0112	4.19E-07
n-NONANE	0.0523	5.68E-05	0.0605	5.32E-09
n-DECANE	0.0024		0.0028	1.01E-10
n-UNDECANE	0.0852	8.06E-06	0.0985	1.31E-09
n-DODECANE	0.0852	2.53E-06	0.0985	6.27E-10
WATER	0.0967	0.0038	4.11E-04	0.9999

/Condensate_Out (Material Stream)					
Thermo Model: APRNGL2					
	Connections				
		Materi	al Inlets		
	Connection			Up Stream Unit Op	
In	Sep1.Liq0				
		Materia	l Outlets	I	
	Connection			Down Stream Unit Op	
Out	<disconne< td=""><td>cted></td><td></td><td></td><td></td></disconne<>	cted>			
		Allocation / Pro	oduct Allocation		
Auto Calculate		False	Is Up To Date		False
Status		Y?No Results			
		Equilibriu	ım Results		
		Bulk	Vap	Liq0	Liq1
Phase Frac [Fraction]		1.00	0.00	1.00	
T [F]		60.0	60.0	60.0	
P [psia]		13.00	13.00	13.00	
Mole Flow [lbmol/h]		6.47	0.00	6.47	
Mass Flow [lb/h]		640.04	0.00	640.04	
Volume Flow [ft3/s]	olume Flow [ft3/s] 0.004 0.000 0.004				
Fraction [Fraction]	raction [Fraction]				
NITROGEN 1.58E-05 0.0148			1.58E-05		
METHANE		0.0024	0.5885	0.0024	
CARBON DIOXIDE 1.59E-05 0.0012 1.59			1.59E-05		
ETHANE	0.0026	0.0957	0.0026		
PROPANE		0.0033	0.0316	0.0033	
ISOBUTANE		0.0135	0.0487	0.0135	
n-BUTANE		0.0400	0.0932	0.0400	
ISOPENTANE		0.0529	0.0456	0.0529	
n-PENTANE		0.0476		0.0476	
CYCLOPENTANE		4.79E-04	1.58E-04	4.79E-04	
n-HEXANE		0.0720	0.0121	0.0720	
METHYLCYCLOHEXANE		0.0946		0.0946	
2,2,4-TRIMETHYLPENTANE		0.0031	1.60E-04	0.0031	
BENZENE		0.0118	0.0017	0.0118	
CYCLOHEXANE		0.0423	0.0045	0.0423	
n-HEPTANE		0.1207	0.0061	0.1207	
TOLUENE		0.0045	1.66E-04	0.0045	
n-OCTANE		0.1011	0.0015	0.1011	
ETHYLBENZENE		0.0049			
m-XYLENE		0.0233			
o-XYLENE		0.0105		0.0105	
n-NONANE		0.0569		0.0569	
n-DECANE		0.0026		0.0026	
n-UNDECANE		0.0926		0.0926	
n-DODECANE		0.0926		0.0926	
WATER	ATER 0.1035 0.0191 0.1035				

/Flash_Emissions (Material Stream)					
hermo Model: APRNGL2					
	Connections				
		Materi	al Inlets		
	Connection		aimets	Up Stream Unit Op	
In	Sep1.Vap	•			
	ocpinap	Materia	l Outlets		
	Connection		louicis	Down Stream Unit Op	
Out	<disconne< td=""><td></td><td></td><td></td><td></td></disconne<>				
	1				
		Allocation / Pro	oduct Allocation		
Auto Calculate		False	Is Up To Date		False
Status		Y?No Results			
		Equilibriu	ım Results		
		Bulk	Vap	Liq0	Liq1
Phase Frac [Fraction]		1.00	1.00	0.00	
T [F]		60.0	60.0	60.0	
P [psia]		13.00	13.00	13.00	
Mole Flow [lbmol/h]		0.57	0.57	0.00	
Mass Flow [lb/h]		17.67	17.67	0.00	
Volume Flow [ft3/s]	olume Flow [ft3/s] 0.067 0.067 0.000				
Fraction [Fraction]					
NITROGEN 0.0148			0.0148	1.58E-05	
METHANE		0.5885	0.5885	0.0024	
CARBON DIOXIDE		0.0012	0.0012	1.59E-05	
ETHANE		0.0957	0.0957	0.0026	
PROPANE		0.0316	0.0316	0.0033	
ISOBUTANE		0.0487	0.0487	0.0135	
n-BUTANE		0.0932	0.0932	0.0400	
ISOPENTANE		0.0456	0.0456	0.0529	
n-PENTANE		0.0304	0.0304	0.0476	
CYCLOPENTANE		1.58E-04	1.58E-04	4.79E-04	
n-HEXANE		0.0121	0.0121	0.0720	
METHYLCYCLOHEXANE		0.0041		0.0946	
2,2,4-TRIMETHYLPENTANE		1.60E-04		0.0031	
BENZENE		0.0017	0.0017	0.0118	
CYCLOHEXANE		0.0045	0.0045	0.0423	
n-HEPTANE		0.0061		0.1207	
TOLUENE		1.66E-04		0.0045	
n-OCTANE		0.0015		0.1011	
ETHYLBENZENE		6.13E-05			
m-XYLENE		2.24E-04			
o-XYLENE		7.81E-05			
n-NONANE		2.62E-04			
n-DECANE		3.70E-06			
n-UNDECANE		3.58E-05			
n-DODECANE		1.10E-05			
WATER	ATER 0.0191 0.1035				

Storage Tank PTE Emissions Calculations

Unit Number: T3 Description: Produced Water Tank

Note: The data on this worksheet applies to each individual emissions unit identified above.

Throughput

70 bbl/turnover	Tank capacity
12 turnover/yr	Turnovers per year
840 bbl/yr	Annual liquid throughput

Harvest Four Corners, LLC Harvest Four Corners, LLC bbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	1.10E-01
Benzene	0.007	2.94E-03
Ethylbenzene	0.0007	2.94E-04
n-Hexane	0.022	9.24E-03
Toluene	0.009	3.78E-03
Xylene	0.006	2.52E-03

 VOC, Benzene, and n-Hexane emission factors are taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance)
 Ethylbenzene, toluene, and xylene emissions factors (Non-Texas) are taken from the TCEQ Project 2010-29 (Emission Factor Determination for Produced Water Storage Tanks) report Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT Stationary Sources Program / Air Pollution Control Division

PS Memo 09-02

То:	Stationary Sources Program, Local Agencies, and Regulated Community
From:	Chris Laplante and Roland C. Hea, Colorado Air Pollution Control Division
Date:	February 8, 2010
Subject:	Oil & Gas Produced Water Tank Batteries
	Regulatory Definitions and Permitting Guidance

This guidance document is intended to answer frequently asked questions concerning oil and gas industry produced water tank batteries. This document does not address any other equipment types that may be part of a common facility with a tank battery. Nothing in this guidance should be construed regarding Air Pollution Control Division (Division) permitting of evaporation ponds or water treatment facilities. Please consult with the Division for information regarding the permitting of evaporation ponds or water treatment facilities.

Revision History

October 1, 2009	Initial issuance.
February 8, 2010	First revision. This guidance document replaces the October 1, 2009 version. Revised language to clarify APEN fee structure, definition of modification, APEN submittals, and produced water exemption.

Topic

Page

	-	0
1.	DEFINITIONS	2
2.	AIR POLLUTANT EMISSION NOTICE Q&A	4
3.	EMISSION FACTORS AND SITE SPECIFIC SAMPLING Q&A	7
4.	EMISSION CALCULATIONS Q&A	8
5.	CONSTRUCTION PERMIT Q&A	9
6.	OIL AND GAS INDUSTRY PRODUCED WATER TANK GP Q & A	10
7.	HOUSE BILL 07-1341	. 12

Document source:

https://www.colorado.gov/pacific/sites/default/files/AP_Memo-09-02-Oil-_-Gas-Produced-Water-Tank-Batteries-Regulatory-Definitions-and-Permitting-Guidance.pdf

3. EMISSION FACTORS AND SITE SPECIFIC SAMPLING Q&A

County	Produced Water Tank Default Emission Factors ¹ (lb/bbl) ²		
	VOC	Benzene	n-Hexane
Adams, Arapahoe, Boulder, Broomfield, Denver, Douglas, Jefferson, Larimer, & Weld	0.262	0.007	0.022
Garfield, Mesa, Rio Blanco, & Moffat	0.178	0.004	0.010
Remainder of Colorado ³	0.262	0.007	0.022

3.1. What are the State approved default emission factors for produced water tanks?

¹ Testing may be performed at any site to determine site-specific emissions factors. These default emission factors may be revised by the Division in the future, pending approved data and testing results.

² Units of lb/bbl means pounds of emissions per barrel of produced water throughput

³ For counties not listed in this table, use the emissions factors listed as a conservative measure or perform testing to determine a site-specific emission factor

3.2. What type of emissions are included in the produced water tank state default emission factors?

State default emission factors for produced water tanks include flash, working, and breathing losses.

3.3. Are there limits as to when produced water tank state default emission factors may be used?

State default emission factors may be used at all oil and gas industry tank batteries. The Division intends to work with industry to refine emission factors and may develop separate emission factors for E&P and non-E&P sites.

3.4. When are site-specific emission factors required for tank batteries?

Site-specific emission factors may be developed and used on a voluntary basis for any tank battery. The Division reserves the authority to require site-specific emission factors at any time. Site-specific emission factors may only be applied at the tank battery for which they were developed, unless otherwise approved by the Division.

3.5. How is a site-specific emission factor developed?

A site-specific emission factor for tank batteries is developed by performing a Division approved stack test. A test protocol must be submitted and approved by the Division prior to performing the test. Once a test protocol has been approved by the Division, subsequent testing may be performed following the approved protocol without submittal to the Division.

The Division must be notified of the site specific testing at least 30-days prior to the actual test date.

Emission Factor Determination for Produced Water Storage Tanks

TCEQ Project 2010-29

Prepared for: Texas Commission on Environmental Quality Austin, Texas

> Prepared by: ENVIRON International Corporation Novato, California

> > Date: August 2010

ENVIRON Project Number: 06-17477T

Document source:

https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/ ei/5820784005FY1024-20100830-environ-% 20EmissionFactorDeterminationForProducedWaterStorageTanks.pdf

Executive Summary

The overall purpose of this Study is to evaluate volatile organic compounds (VOC), speciated VOC and hazardous air pollutant (HAP) emissions from produced water and/or saltwater storage tanks servicing oil and gas wells and to develop appropriate VOC and HAP emission factors. The emission factors are to be used for emission inventory development purposes.

The primary source of information for this study was testing conducted by the Texas Commission on Environmental Quality (TCEQ) under Work Order 522-7-84005-FY10-25, *Upstream Oil & Gas Tank Measurements*, TCEQ Project 2010-39. As part of this referenced testing project, pressurized produced water samples were taken at seven different tank batteries located in Johnson, Wise and Tarrant Counties, Texas (all part of the Eastern Barnett Shale region) and analyzed for flash gas volume and composition. The sample collection and analysis conducted as part of TCEQ Project 2010-39 was done according to strict sampling and quality assurance procedures. In addition to TCEQ Project 2010-39 data, a thorough review of publically-available information sources identified a limited amount of data on produced water emissions. This was supplemented by data provided by two natural gas producers and one petroleum engineering services company. Other than TCEQ Project 2010-39 data, however, it could not be confirmed that any of the data had undergone a rigorous quality assurance process and therefore is considered secondary data, used to support conclusions drawn using the primary data but not used directly in deriving the produced water emission factors.

Emissions from produced water storage tanks consist of flash emissions, working losses and breathing losses. Flash emissions are determined using flash gas analysis. Working and breathing losses are estimated using EPA TANKS 4.09d software. Using this approach and the assumptions detailed within this report, it is determined that working and breathing losses associated with primary data source sites are very small compared to flash emissions and can be ignored without affecting the overall emission factor determination.

Table ES-1 presents the recommended emission factors for VOC and four HAPs – benzene, toluene, ethylbenzene and xylenes – derived from the primary data source sites. For comparative purposes, average emissions from Texas and non-Texas secondary sites are also presented in Table ES-1.

	Average Produced Water Emission Factor by Data Set (Ib/bbl)							
Pollutant	Recommended Emission Factor	Secondary Data – Texas	Secondary Data – Non- Texas					
VOC	0.01	0.012	0.18					
Benzene	0.0001	0.0012	0.004					
Toluene	0.0003	0.0012	0.009					
Ethylbenzene	0.000006	0.0001	0.0007					
Xylenes	0.00006	0.0003	0.006					

 Table ES-1. Recommended Emission Factors and Comparative Data

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Pressure Settings (psig)

Identification	
User Identification:	Los Mestenios - T7 - Methanol
City:	Gavilan
State:	New Mexico
Company:	Harvest Four Corners, LLC
Type of Tank:	Horizontal Tank
Description:	500 Gallon Methanol Storage Tank
Tank Dimensions	
Shell Length (ft):	6.00
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	12.00
Net Throughput(gal/yr):	6,000.00
Is Tank Heated (y/n):	Ν
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
	6000
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Dressure Cattings (noig)	0.02

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

0.03

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Los Mestenios - T7 - Methanol - Horizontal Tank Gavilan, New Mexico

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	67.36	53.93	80.79	59.23	1.8115	1.1881	2.6951	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Los Mestenios - T7 - Methanol - Horizontal Tank Gavilan, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	36.5024
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0103
Vapor Space Expansion Factor:	0.2419
Vented Vapor Saturation Factor:	0.8389
Venied Vapor Gataration Factor.	0.0003
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0103
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.8115
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vanar Shaap Expansion Factor	
Vapor Space Expansion Factor	0.2410
Vapor Space Expansion Factor:	0.2419
Daily Vapor Temperature Range (deg. R):	53.7176 1.5070
Daily Vapor Pressure Range (psia):	
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	1 9115
Surface Temperature (psia):	1.8115
Vapor Pressure at Daily Minimum Liquid	1,1881
Surface Temperature (psia):	1.1001
Vapor Pressure at Daily Maximum Liquid	2.6951
Surface Temperature (psia):	
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8389
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.8115
Vapor Space Outage (ft):	2.0000
Working Losses (Ib):	8.2917
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	52.0.00
Surface Temperature (psia):	1.8115
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
	1.0000

TANKS 4.0 Report

Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	44.7941

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Los Mestenios - T7 - Methanol - Horizontal Tank Gavilan, New Mexico

	Losses(lbs)					
Components	Working Loss	Breathing Loss	Total Emissions			
Methyl alcohol	8.29	36.50	44.79			

			Faci	lity Total Emiss	sions	
Sources		CO2,	CH4,	N2O,	GHG,	CO2e,
		tpy	tpy	tpy	tpy	tpy
Engine & Turbine Exhaust		11,586.25	2.19E-01	2.20E-02	11,586.49	11598.29
SSM Blowdowns		1.23	40.98		42.21	1025.65
Reciprocating Compressor Venting		1.54	51.19		52.73	1281.27
Centrifugal Compressor Venting		4.01	133.35		137.36	3337.80
Equipment Leaks		2.15E-01	7.15		7.36	178.95
Separators & Storage Tanks (Flash Emissions)		7.79E-02	13.58		13.65	339.48
	Total	11,593.32	246.46	2.20E-02	11,839.81	17,761.44

Engine & Turbine Exhaust Emissions

Unit		E	mission Factor	S	Emission Rates			
Numbers	Description	CO2,	CH4,	N2O,	CO2,	CH4,	N2O,	
		kg/MMBtu	kg/MMBtu	kg/MMBtu	tpy	tpy	tpy	
1	Solar Saturn T1200	53.06	1.00E-03	1.00E-04	5,544.61	1.04E-01	1.04E-02	
2	Waukesha L7042GL	53.06	1.00E-03	1.00E-04	6,010.45	1.13E-01	1.13E-02	
3	Scania DS11	73.96	3.00E-03	6.00E-04	31.19	1.27E-03	2.53E-04	
	Total				11,586.25	2.19E-01	2.20E-02	

The emissions factors are taken from 40 CFR 98, Subpart C, Tables C-1 & C-2 Emission Rates (tpy) = kg/MMBtu x 2.2 lb/kg x MMBtu/yr / 2,000 lb/ton

				LHV	HHV	
Unit			Operating	Design	Design	Fuel
Numbers	Description	Fuel Types	Times,	Heat Rates,	Heat Rates,	Usages,
			hr/yr	MMBtu/hr	MMBtu/hr	MMBtu/yr
1	Solar Saturn T1200	Nat. Gas	8,760	9.76	10.84	94,997
2	Waukesha L7042GL	Nat. Gas	8,760	10.58	11.76	102,979
3	Scania DS11	Diesel	500	0.69	0.77	383

The fuel types and operating times are provided by Harvest

The LHV design heat rates are taken from manufacturers data

HHV Design Heat Rates (MMBtu/hr) = LHV Design Heat Rates (MMBtu/hr) / 0.9 LHV/HHV

HHV Fuel Usages (MMBtu/yr) = HHV Design Heat Rates (MMBtu/hr) x hr/yr

SSM Blowdown Emissions

			CO2	CH4		
Unit		Total	Emission	Emission	Emissic	on Rates
Numbers	Description	Gas Losses,	Factors,	Factors,	CO2,	CH4,
		scf/yr	lb/scf	lb/scf	tpy	tpy
SSM	SSM Blowdowns	2,462,200	0.0010	0.0333	1.23	40.98

The annual blowdown volumes are calculated from data provided by Harvest

The CO2 and CH4 emission factors are calculated from the facility extended gas analysis

Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Reciprocating Compressor Venting Emissions

Unit		Emissic	on Rates
Numbers	Description	CO2,	CH4,
		tpy	tpy
NA	Blowdown Valve Leakage	0.15	4.89
NA	Rod Packing Emissions	1.39	46.30
NA	Isolation Valve Leakage	0.00	0.00
	Total	1.54	51.19

Operating or standby mode - includes blowdown valve leakage through blowdown vent stack

Operating mode - includes rod packing emissions

Non-operating depressurized mode - includes isolation valve leakage through open blowdown vents (without blind flanges)

Rod packing gas emissions assume 4 cylinders per compressor

A combination of equations W-26 & W-36 (Subpart W) is used to calculate reciprocating compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit		Number of	Gas	Operating	CO2 Mole	CH4 Mole	CO2	CH4
Numbers	Description	Compressors	Emissions,	Times,	Percents,	Percents,	Density,	Density,
		#	scf/hr	hr/yr	%	%	kg/scf	kg/scf
NA	Blowdown Valve Leakage	1	33.5	8,760	0.86	78.73	0.0526	0.0192
NA	Rod Packing Emissions	1	317.2	8,760	0.86	78.73	0.0526	0.0192
NA	Isolation Valve Leakage	1	10.5	0	0.86	78.73	0.0526	0.0192

The number of compressors is provided by Harvest

Blowdown valve leakage (33.5 scf/hr) and rod packing emissions occur in operating mode

Blowdown valve leakage (10.5 scf/hr) occurs in standby pressurized mode

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The operating times (the average operating times for all station compressors combined) are provided by Harvest

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Centrifugal Compressor Venting Emissions

Unit		Emission Rates			
Numbers	Description	CO2,	CH4,		
		tpy	tpy		
NA	Blowdown Valve Leakage	0.73	24.43		
NA	Oil Degassing Vents	3.27	108.92		
NA	Isolation Valve Leakage	0.00	0.00		
	Total	4.01	133.35		

Operating mode - includes blowdown valve leakage (wet and dry seal) and the oil degassing vents (wet seal)

Non-operating depressurized mode - includes isolation valve leakage (wet & dry seal) through open blowdown vents (without blind flanges) A combination of equations W-22 & W-36 (Subpart W) is used to calculate centrifugal compressor emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rates (tpy) = # x scf/hr x hr/yr x (CO2 Mole Percent (%) / 100) x CO2 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rates (tpy) = # x scf/hr x hr/yr x (CH4 Mole Percent (%) / 100) x CH4 Density (kg/scf)

x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

Unit Numbers	Description	Number of Compressors #	Gas Emissions, scf/hr	Operating Times, hr/yr	CO2 Mole Percents, %	CH4 Mole Percents, %	CO2 Density, kg/scf	CH4 Density, kg/scf
NA	Blowdown Valve Leakage	1	167.4	8,760	0.86	78.73	0.0526	0.0192
NA	Oil Degassing Vents	1	746.2	8,760	0.86	78.73	0.0526	0.0192
NA	Isolation Valve Leakage	1	10.8	0	0.86	78.73	0.0526	0.0192

The number of compressors is provided by Harvest

Emission factors are the three year rolling average (2012-2014) of all measurements in the Williams Field Services, LLC compressor fleet located at natural gas processing plants

The operating times (the average operating times for all station compressors combined) are provided by Harvest

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The CO2 & CH4 densities (kg/scf) are taken from Subpart W, Paragraph 98.233(v)

Equipment Leaks Emissions

Unit		Emission Rates			
Numbers	Description	CO2,	CH4,		
		tpy	tpy		
NA	Valves	0.2	5.6		
NA	Connectors	0.0	0.7		
NA	Open-Ended Lines	0.0	0.4		
NA	Pressure Relief Valves	0.0	0.5		
	Total	0.2	7.1		

A combination of equations W-31 & W-36 (Subpart W) is used to calculate uncombusted CO2 & CH4 emissions

As the NMED requires CO2 & CH4 emissions rather than CO2e emissions, it is not necessary to include the global warming potential from equation W-36

CO2 Emission Rate (tpy) = # x scf/hr/component x (CO2 Content (mole %) / 100) x hr/yr x CO2 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

CH4 Emission Rate (tpy) = # x scf/hr/component x (CH4 Content (mole %) / 100) x hr/yr x CH4 Density (kg/scf) x (2,204.6 lb/tonne / 2,000 lb/ton) / 1,000 kg/tonne

			Emission					
Unit		Number of	Factors,	CO2	CH4	Operating	CO2	CH4
Numbers	Description	Components,	scf/hr	Contents,	Contents,	Times,	Density,	Density,
		#	/component	mole %	mole %	hr/yr	kg/scf	kg/scf
NA	Valves	315	0.121	0.86	78.73	8,760	0.0526	0.0192
NA	Connectors	263	0.017	0.86	78.73	8,760	0.0526	0.0192
NA	Open-Ended Lines	88	0.031	0.86	78.73	8,760	0.0526	0.0192
NA	Pressure Relief Valves	19	0.193	0.86	78.73	8,760	0.0526	0.0192

The number of sources are calculated based on the number of compressors and dehydrators at the station (see criteria pollutant and HAP equipment leaks calculations)

The emission factors are taken from Subpart W, Table W-1A (Western U.S. - Gas Service)

The facility CO2 and CH4 contents are taken from the facility extended gas analysis

The operating times are provided by Harvest (default is the entire year)

The CO2 & CH4 densities are taken from Subpart W, Paragraph 98.233(v)

Separators & Storage Tanks (Flash Emissions)

Unit		Emissio	on Rates
Number	Description	CO2,	CH4,
		tpy	tpy
T1	Condensate Tank	7.79E-02	13.58
T2	Condensate Tank		
	Tot	al 7.79E-02	13.58

Emission rates calculated from VMGSym results

Gas Stream Composition

				Waight	
	Mole	Molecular	Component	Weight Percent	Emission
Components	Percents.		Weights,	of Total.	Factors,
Components	reicenits, %	Weights, lb/lb-mole	lb/lb-mole	01 10tal, %	lb/scf
Carbon Dioxide	0.8632	44 01	0.38	1.7805	0.0010
•		44.01 34.07	0.38	0.0000	
Hydrogen Sulfide	0.0000	•			0.0000
Nitrogen	0.4462	28.01	0.12	0.5857	0.0003
Methane	78.7294	16.04	12.63	59.1848	0.0333
Ethane	10.7901	30.07	3.24	15.2064	0.0086
Propane	5.0734	44.09	2.24	10.4835	0.0059
IsoButane	0.8940	58.12	0.52	2.4352	0.0014
Normal Butane	1.5609	58.12	0.91	4.2518	0.0024
IsoPentane	0.5577	72.15	0.40	1.8858	0.0011
Normal Pentane	0.4298	72.15	0.31	1.4534	0.0008
Cyclopentane	0.0189	70.14	0.01	0.0621	0.0000
n-Hexane	0.1299	86.17	0.11	0.5246	0.0003
Cyclohexane	0.0389	84.16	0.03	0.1534	0.0001
Other Hexanes	0.2872	86.18	0.25	1.1600	0.0007
Heptanes	0.0720	100.20	0.07	0.3381	0.0002
Methylcyclohexane	0.0556	98.19	0.05	0.2559	0.0001
2,2,4-Trimethylpentane	0.0028	100.21	0.00	0.0132	0.0000
Benzene	0.0123	78.11	0.01	0.0450	0.0000
Toluene	0.0165	92.14	0.02	0.0713	0.0000
Ethylbenzene	0.0002	106.17	0.00	0.0010	0.0000
Xylenes	0.0024	106.17	0.00	0.0119	0.0000
C8+ heavies	0.0187	110.00	0.02	0.0964	0.0001
Total	100.0001		21.34	100.0000	0.0562
VOC			4.96		0.0131

Gas stream composition obtained from Los Mestenios extended gas analysis dated 05/06/2021

Component Weights (lb/lb-mole) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) Weight Percent of Total (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole) Emission Factors (lb/scf) = [Mole Percents (%) / 100] x Molecular Weights (lb/lb-mole) / 379.4 scf/lb-mole

Table A-1 to Subpart A of Part 98—Global Warming Potentials

GLOBAL WARMING POTENTIALS

[100-Year Time Horizon]

Name	CAS No.	Chemical formula	Global warming potential (100 yr.)
Carbon dioxide	124-38-9	CO ₂	1
Methane	74-82-8	CH_4	°25
Nitrous oxide	10024-97-2	N ₂ O	^a 298
HFC-23	75-46-7	CHF ₃	^a 14,800
HFC-32	75-10-5	CH_2F_2	^a 675
HFC-41	593-53-3	CH ₃ F	^a 92
HFC-125	354-33-6	C_2HF_5	^a 3,500
HFC-134	359-35-3	$C_2H_2F_4$	^a 1,100
HFC-134a	811-97-2	CH ₂ FCF ₃	^a 1,430
HFC-143	430-66-0	$C_2H_3F_3$	°353
HFC-143a	420-46-2	$C_2H_3F_3$	^a 4,470
HFC-152	624-72-6	CH ₂ FCH ₂ F	53
HFC-152a	75-37-6	CH ₃ CHF ₂	^a 124
HFC-161	353-36-6	CH ₃ CH ₂ F	12
HFC-227ea	431-89-0	C ₃ HF ₇	^a 3,220
HFC-236cb	677-56-5	CH ₂ FCF ₂ CF ₃	1,340
HFC-236ea	431-63-0	CHF ₂ CHFCF ₃	1,370
HFC-236fa	690-39-1	$C_3H_2F_6$	^a 9,810
HFC-245ca	679-86-7	$C_3H_3F_5$	^a 693
HFC-245fa	460-73-1	CHF ₂ CH ₂ CF ₃	1,030
HFC-365mfc	406-58-6	CH ₃ CF ₂ CH ₂ CF ₃	794
HFC-43-10mee	138495-42-8	CF ₃ CFHCFHCF ₂ CF ₃	^a 1,640
Sulfur hexafluoride	2551-62-4	SF ₆	^a 22,800
Trifluoromethyl sulphur pentafluoride	373-80-8	SF5CF3	17,700
Nitrogen trifluoride	7783-54-2	NF ₃	17,200
PFC-14 (Perfluoromethane)	75-73-0	CF_4	^a 7,390
PFC-116 (Perfluoroethane)	76-16-4	C_2F_6	^a 12,200
PFC-218 (Perfluoropropane)	76-19-7	C_3F_8	^a 8,830
Perfluorocyclopropane	931-91-9	C-C ₃ F ₆	17,340
PFC-3-1-10 (Perfluorobutane)	355-25-9	C_4F_{10}	^a 8,860
PFC-318 (Perfluorocyclobutane)	115-25-3	C-C ₄ F ₈	^a 10,300
PFC-4-1-12 (Perfluoropentane)	678-26-2		^a 9,160
PFC-5-1-14 (Perfluorohexane, FC-72)	355-42-0		^a 9,300
PFC-9-1-18	306-94-5		7,500
HCFE-235da2 (Isoflurane)	26675-46-7	CHF ₂ OCHClCF ₃	350
HFE-43-10pccc (H-Galden 1040x, HG-11)		CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂	1,870

HFE-125	3822-68-2 CHF ₂ OCF ₃	14,900
HFE-134 (HG-00)	1691-17-4 CHF2OCHF2	6,320
HFE-143a	421-14-7CH ₃ OCF ₃	756
HFE-227ea	2356-62-9CF ₃ CHFOCF ₃	1,540
HFE-236ca12 (HG-10)	78522-47-1CHF2OCF2OCHF2	2,800
HFE-236ea2 (Desflurane)	57041-67-5CHF ₂ OCHFCF ₃	989
HFE-236fa	20193-67-3CF ₃ CH ₂ OCF ₃	487
HFE-245cb2	22410-44-2CH ₃ OCF ₂ CF ₃	708
HFE-245fa1	84011-15-4CHF ₂ CH ₂ OCF ₃	286
HFE-245fa2	1885-48-9CHF2OCH2CF3	659
HFE-254cb2	425-88-7CH ₃ OCF ₂ CHF ₂	359
HFE-263fb2	460-43-5CF ₃ CH ₂ OCH ₃	11
HFE-329mcc2	134769-21-4CF ₃ CF ₂ OCF ₂ CHF ₂	919
HFE-338mcf2	156053-88-2CF ₃ CF ₂ OCH ₂ CF ₃	552
HFE-338pcc13 (HG-01)	188690-78-0CHF2OCF2CF2OCHF2	1,500
HFE-347mcc3 (HFE-7000)	375-03-1CH ₃ OCF ₂ CF ₂ CF ₃	575
HFE-347mcf2	171182-95-9CF ₃ CF ₂ OCH ₂ CHF ₂	374
HFE-347pcf2	406-78-0CHF ₂ CF ₂ OCH ₂ CF ₃	580
HFE-356mec3	382-34-3CH ₃ OCF ₂ CHFCF ₃	101
HFE-356pcc3	160620-20-2CH ₃ OCF ₂ CF ₂ CHF ₂	110
HFE-356pcf2	50807-77-7CHF2CH2OCF2CHF2	265
HFE-356pcf3	35042-99-0CHF2OCH2CF2CHF2	502
HFE-365mcf3	378-16-5 CF ₃ CF ₂ CH ₂ OCH ₃	11
HFE-374pc2	512-51-6CH ₃ CH ₂ OCF ₂ CHF ₂	557
HFE-449s1 (HFE-7100)	163702-07-6C ₄ F ₉ OCH ₃	297
Chemical blend	163702-08-7(CF ₃) ₂ CFCF ₂ OCH ₃	
HFE-569sf2 (HFE-7200)	163702-05-4C ₄ F ₉ OC ₂ H ₅	59
Chemical blend	163702-06-5(CF ₃) ₂ CFCF ₂ OC ₂ H ₅	
Sevoflurane (HFE-347mmz1)	28523-86-6CH ₂ FOCH(CF ₃) ₂	345
HFE-356mm1	13171-18-1 (CF ₃) ₂ CHOCH ₃	27
HFE-338mmz1	26103-08-2CHF ₂ OCH(CF ₃) ₂	380
(Octafluorotetramethy-lene) hydroxymethyl group	NAX-(CF ₂) ₄ CH(OH)-X	73
HFE-347mmy1	22052-84-2CH ₃ OCF(CF ₃) ₂	343
Bis(trifluoromethyl)-methanol	920-66-1 (CF ₃) ₂ CHOH	195
2,2,3,3,3-pentafluoropropanol	422-05-9CF ₃ CF ₂ CH ₂ OH	42
PFPMIE (HT-70)	NACF ₃ OCF(CF ₃)CF ₂ OCF ₂ OCF ₃	10,300

^aThe GWP for this compound is different than the GWP in the version of Table A-1 to subpart A of part 98 published on October 30, 2009.

Table C-1 to Subpart C of Part 98—Default CO₂ Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBtu
Anthracite	25.09	103.69
Bituminous	24.93	93.28
Subbituminous	17.25	97.17
Lignite	14.21	97.72
Coal Coke	24.80	113.67
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.67
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBtu
(Weighted U.S. Average)	1.026×10^{-3}	53.06
Petroleum products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹	0.092	61.71
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
Butane ¹	0.103	64.77
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02

Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil	0.158	75.36
Crude Oil	0.138	74.54
Other fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.97
Plastics	38.00	75.00
Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092×10^{-3}	274.32
Coke Oven Gas	0.599×10^{-3}	46.85
Propane Gas	2.516×10^{-3}	61.46
Fuel Gas ⁴	1.388×10^{-3}	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485×10^{-3}	52.07
Other Biomass Gases	0.655×10^{-3}	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO₂/mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 $^2 Ethylene \,HHV$ determined at 41 $^\circ F$ (5 $^\circ C)$ and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

 4 Reporters subject to subpart X of this part that are complying with \$98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in \$98.243(d)(2)(i) and (d)(2)(i) and \$98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: $HHV_w = ((100 - M)/100)*HHV_d$ where $HHV_w =$ wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013]

L Back to Top

Table C-2 to Subpart C of Part 98—Default CH4 and N2O Emission Factors for Various Types of Fuel

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	$\begin{array}{c} Default \ N_2O \ emission \ factor \ (kg \\ N_2O/mmBtu) \end{array}$
Coal and Coke (All fuel types in Table C-1)	1.1×10^{-02}	1.6×10^{-03}
Natural Gas	1.0×10^{-03}	1.0×10^{-04}
Petroleum (All fuel types in Table C-1)	3.0×10^{-03}	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0×10^{-04}
Municipal Solid Waste	3.2×10^{-02}	4.2×10^{-03}
Tires	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2×10^{-05}	1.0×10^{-04}
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2×10^{-02}	4.2×10^{-03}
Wood and wood residuals	7.2×10^{-03}	3.6×10^{-03}
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2×10^{-03}	6.3×10^{-04}
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1×10^{-03}	1.1×10^{-04}

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH_4 /mmBtu.

Onshore petroleum and natural gas production	Emission factor (scf/hour/ component)
Eastern U.S.	
Population Emission Factors—All Com	ponents, Gas Service ¹
Valve	0.027
Connector	0.003
Open-ended Line	0.061
Pressure Relief Valve	0.040
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compone	ents, Light Crude Service ⁴
Valve	0.05
Flange	0.003
Connector	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Factors—All Compone	nts, Heavy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003
Western U.S.	
Population Emission Factors—All Com	ponents, Gas Service ¹
Valve	0.121
Connector	0.017
Open-ended Line	0.031
Pressure Relief Valve	0.193
Low Continuous Bleed Pneumatic Device Vents ²	1.39
High Continuous Bleed Pneumatic Device Vents ²	37.3
Intermittent Bleed Pneumatic Device Vents ²	13.5
Pneumatic Pumps ³	13.3
Population Emission Factors—All Compone	
Valve	0.05
Flange	0.003

Table W-1A of Subpart W of Part 98—Default Whole Gas Emission Factors for Onshore Petroleum and Natural Gas Production

Connector (other)	0.007
Open-ended Line	0.05
Pump	0.01
Other ⁵	0.30
Population Emission Fac	tors—All Components, Heavy Crude Service ⁶
Valve	0.0005
Flange	0.0009
Connector (other)	0.0003
Open-ended Line	0.006
Other ⁵	0.003

¹For multi-phase flow that includes gas, use the gas service emissions factors.

²Emission Factor is in units of "scf/hour/device."

³Emission Factor is in units of "scf/hour/pump."

⁴Hydrocarbon liquids greater than or equal to 20°API are considered "light crude."

⁵"Others" category includes instruments, loading arms, pressure relief valves, stuffing boxes, compressor seals, dump lever arms, and vents.

⁶Hydrocarbon liquids less than 20°API are considered "heavy crude."

Facility Total Actual Emissions (Criteria Pollutants)

Company: Harvest Four Corners, LLC

Facility: Los Mestenios Compressor Station

Date: February 2022

Unit	Description	NC	DX,	С	О,	VC	DC,	SC	DX,	TS	SP,	PN	110,	PM	2.5,
Number		pph	tpy												
1	Solar Saturn T1200	4.41	19.30	2.60	11.40	9.13E-02	4.00E-01	3.69E-02	1.61E-01	7.15E-02	3.13E-01	7.15E-02	3.13E-01	7.15E-02	3.13E-01
2	Waukesha 7042GL	4.38	19.20	7.74	33.92	2.92	12.80	5.77E-03	2.53E-02	9.81E-02	4.30E-01	9.81E-02	4.30E-01	9.81E-02	4.30E-01
3	Scania DS11	3.04	1.85E-01	6.56E-01	3.99E-02	2.48E-01	1.51E-02	2.00E-01	1.22E-02	2.14E-01	1.30E-02	2.14E-01	1.30E-02	2.14E-01	1.30E-02
4	Fuel Gas Heater	3.33E-02	1.46E-01	2.80E-02	1.23E-01	1.83E-03	8.03E-03	2.00E-04	8.76E-04	2.53E-03	1.11E-02	2.53E-03	1.11E-02	2.53E-03	1.11E-02
5	Tank Heater	3.33E-02	1.46E-01	2.80E-02	1.23E-01	1.83E-03	8.03E-03	2.00E-04	8.76E-04	2.53E-03	1.11E-02	2.53E-03	1.11E-02	2.53E-03	1.11E-02
SSM	SSM	-	-	-	-	-	4.21	-	-	-	-	-	-	-	-
F1	Leaks	-	-	-	-	1.10	4.81	-	-	-	-	-	-	-	-
L1	Truck Loading (Condensate)	-	-	-	-	-	1.85E-01	-	-	-	-	-	-	-	-
L2	Truck Loading (Produced H2O)	-	-	-	-	-	2.16E-04	-	-	-	-	-	-	-	-
T1	Condensate Tank - 480 bbl	-	-	-	-	-	8.69	-	-	-	-	-	-	-	-
T2	Condensate Tank - 400 bbl	-	-	-	-	-	1.47	-	-	-	-	-	-	-	-
Т3	Produced H2O Tank - 70 bbl	-	-	-	-	-	1.72E-02	-	-	-	-	-	-	-	-
T4	Lube Oil Tank - 500 gal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T5	Used Oil Tank - 500 gal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T6	Ambitrol Tank - 350 gal	-	-	-	-	-	-	-	-	-	-	-	-	-	-
T7	Methanol Tank - 500 gal	-	-	-	-	-	2.24E-02	-	-	-	-	-	-	-	-
	Total	11.90	38.98	11.06	45.61	4.36	32.63	2.43E-01	2.01E-01	3.89E-01	7.78E-01	3.89E-01	7.78E-01	3.89E-01	7.78E-01

Residual oil #6 was used as an estimate for lubrication oil. As the vapor pressure of residual oil #6 is less than 0.2 psia, emissioins from the tank containing lubrication oil are assumed to be insignificant.

Ambitrol is an inhibited ethylene or propylene glycol coolant containing ethylene or propylene glycol, water and less than 5% dipotassium hydrogen phosphate. As the vapor pressures of ethylene glycol and propylene glycol are less than 0.2 psia, emissions from the tank containing Ambitrol are assumed to be insignificant.

Turbine Exhaust Actual Emissions Calculations

Unit Number:	1
Description:	Solar Saturn T1200

Horsepower Calculations

6,715 ft abo	ove MSL	Elevation
1,200 hp		Nameplate hp
1,136 hp		Site-rated hp
Fuel Consumption		
10.84 MMB	tu/hr	Hourly fuel consumption
12,044 scf/hi	ſ	Hourly fuel consumption
8,760 hr/yr		Annual operating time
94,958 MMB	tu/yr	Annual fuel consumption
105.51 MMs	cf/yr	Annual fuel consumption

900 Btu/scf

Steady-State Emission Rates

F	lourly fuel consumption
F	lourly fuel consumption
A	Annual operating time
A	Annual fuel consumption
A	Annual fuel consumption
F	ield gas heating value

Mfg. data Mfg. data

Btu/hp-hr x NMAQB site-rated hp / 1,000,000 MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 Nominal heat content

Pollutants	Uncontrolled Emission Rates,		
	pph	tpy	
NOX	4.41	19.30	
СО	2.60	11.40	
VOC	9.13E-02	4.00E-01	

Emissions brought forward from Part 71 TV permit R6NM-04-10-M1

	Emission	Uncontrolled Emission Rates	
Pollutants	Factors,		
	lb/MMBtu	pph	tpy
SO2	3.40E-03	3.69E-02	1.61E-01
TSP	6.60E-03	7.15E-02	3.13E-01
PM10	6.60E-03	7.15E-02	3.13E-01
PM2.5	6.60E-03	7.15E-02	3.13E-01

Emission factors taken from AP-42, Table 3.1-2a

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Notes :

There were no downtimes in 2021.

Engine Exhaust Actual Emissions Calculations

Unit Number:	2
Description:	Waukesha L7042GL
Туре:	Four Stroke Lean Burn (Turbocharged)

Horsepower Calculations

6,715 ft above MSL	Elevation	
1,480 hp	Nameplate hp	Mfg. data
1,326 hp	Mfg. Site-rated hp	Mfg. product bulletin Power Derate, S8154-6, April 2001 (loss of 2% for every 1,000 ft over 1,500 ft)
Engine Specifications		
1200 rpm	Engine rpm	Mfg. data
7040 cu in	Engine displacement	Mfg. data
124.28 psi	BMEP	792,000 x Mfg. Site-rated hp / (rpm * cu in)
Fuel Consumption		
7408 Btu/hp-hr	Brake specific fuel consumption	Mfg. data
9.82 MMBtu/hr	Hourly fuel consumption	Btu/hp-hr x Mfg. site-rated hp / 1,000,000
900 Btu/scf	Field gas heating value	Nominal heat content
10,912 scf/hr	Hourly fuel consumption	MMBtu/hr x 1,000,000 / Btu/scf
<mark>8,760</mark> hr/yr	Annual operating time	Harvest Four Corners, LLC
86,027 MMBtu/yr	Annual fuel consumption	MMBtu/hr x hr/yr
95.59 MMscf/yr	Annual fuel consumption	scf/hr x hr/yr / 1,000,000

Steady-State Emission Rates

	Emission	Uncontrolled Emission Rates	
Pollutants	Factors,		
	g/hp-hr	pph	tpy
NOX	1.50	4.38	19.20
СО	2.65	7.74	33.92
VOC	1.00	2.92	12.80

Emission factors taken from Waukesha Bulletin 7005 0107

Uncontrolled Emission Rates (pph) = g/hp-hr x hp / 453.59 g/lb

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Pollutants	Emission	Uncontrolled Emission Rates.	
Pollularits	Factors,	Uncontrolled E	mission rates,
	lb/MMBtu	pph	tpy
SO2	5.88E-04	5.77E-03	2.53E-02
TSP	9.99E-03	9.81E-02	4.30E-01
PM10	9.99E-03	9.81E-02	4.30E-01
PM2.5	9.99E-03	9.81E-02	4.30E-01

Emission factors taken from AP-42, Table 3.2-2

Particulate factors include both filterable and condensible emissions

Uncontrolled Emission Rates (pph) = Ib/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Notes:

Since the engine is new and there are no operating hours for 2021, it is assumed the engine will operate 8,760 hours per year.

Engine Exhaust Emissions Calculations

Unit Number: 3 Description: Scania DS11 Diesel Generator (Emergency)

Horsepower

250 hp

Nameplate hp

Mfg. data

The data sheet shows the DS11 has a horsepower rating of 250+. Since the assocaited alternator is rated at 130 kW, the assumption of a site rating at 250 hp should be conservative.

Fuel Consumption

0.69 MMBtu/hr 138,000 Btu/gal 5.00 gal/hr 121.8 hr/yr 609 gal/yr 84 MMBtu/yr Hourly fuel consumption Field gas heating value Hourly fuel consumption Annual operating time Hourly fuel consumption Annual fuel consumption Mfg. data Nominal heat content MMBtu/hr x 1,000,000 / Btu/gal Harvest Four Corners, LLC gal/hr x hr/yr MMBtu/hr x hr/yr

Steady-State Emission Rates

	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMBtu	pph	tpy
NO2	4.41	3.04	1.85E-01
СО	9.50E-01	6.56E-01	3.99E-02
VOC	3.60E-01	2.48E-01	1.51E-02
SO2	2.90E-01	2.00E-01	1.22E-02
TSP	3.10E-01	2.14E-01	1.30E-02
PM10	3.10E-01	2.14E-01	1.30E-02
PM2.5	3.10E-01	2.14E-01	1.30E-02
Acetaldehyde	7.67E-04	5.29E-04	3.22E-05
Benzene	9.33E-04	6.44E-04	3.92E-05
Formaldehyde	1.18E-03	8.14E-04	4.96E-05
Naphthalene	8.48E-05	5.85E-05	3.56E-06
Toluene	4.09E-04	2.82E-04	1.72E-05
Xylene	2.85E-04	1.97E-04	1.20E-05

Emission factors taken from AP-42, Tables 3.3-1 & 3.3-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr

Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Heater Exhaust Actual Emissions Calculations

Unit Number:	4 & 5
Description:	Fuel Gas Heater and Tank Heater

Note: The data on this worksheet applies to each individual emissions unit identified above.

Fuel Consumption	
0.30 MMBtu/hr	Capacity
333 scf/hr	Hourly fuel consumption
<mark>8,760</mark> hr/yr	Annual operating time
2,628 MMBtu/yr	Annual fuel consumption
2.92 MMscf/yr	Annual fuel consumption
900 Btu/scf	Field gas heating value

Mfg. data MMBtu/hr x 1,000,000 / Btu/scf Harvest Four Corners, LLC MMBtu/hr x hr/yr scf/hr x hr/yr / 1,000,000 Nominal heat content

Steady-State Emission Rates

	Emission		
	Emission		
Pollutants	Factors,	Uncontrolled E	mission Rates,
	lb/MMscf	pph	tpy
NOX	100	3.33E-02	1.46E-01
СО	84	2.80E-02	1.23E-01
VOC	5.5	1.83E-03	8.03E-03
SO2	0.6	2.00E-04	8.76E-04
TSP	7.60	2.53E-03	1.11E-02
PM10	7.60	2.53E-03	1.11E-02
PM2.5	7.60	2.53E-03	1.11E-02
Lead	5.00E-04	1.67E-07	7.30E-07

Emission factors taken from AP-42, Tables 1.4-1 & 1.4-2

Uncontrolled Emission Rates (pph) = lb/MMBtu x MMBtu/hr Uncontrolled Emission Rates (tpy) = Uncontrolled Emission Rates (pph) x hr/yr / 2,000 lb/ton

Notes:

It is conservatively estimated the heaters will each operate 8,760 hours per year.

Turbine & Compressor Blowdown Actual Emissions Calculations

Unit Number: SSM

Description: Turbine, Compressor & Piping Associated With Station

Throughput

1	# of units
0	events/yr/unit
5,780	scf/event
12,400	scf/event
0	scf/yr

Number of units Blowdowns per year per unit Gas loss per blowdown (compressor) Gas loss per blowdown (turbine) Annual gas loss Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC # of units x events/yr/unit x [scf/event (compressor) + scf/event (turbine)]

Emission Rates

	Uncontrolled,
Emission	Emission
Factors,	Rates,
lb/scf	tpy
1.307E-02	0.00
	Factors, lb/scf

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	0.8632	44.01	1.002E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.4462	28.01	3.295E-04
Methane	78.7294	16.04	3.329E-02
Ethane	10.7901	30.07	8.554E-03
Propane	5.0734	44.09	5.897E-03
Isobutane	0.8940	58.12	1.370E-03
n-Butane	1.5609	58.12	2.392E-03
Isopentane	0.5577	72.15	1.061E-03
n-Pentane	0.4298	72.15	8.176E-04
Cyclopentane	0.0189	70.14	3.495E-05
n-Hexane	0.1299	86.17	2.951E-04
Cyclohexane	0.0389	84.16	8.631E-05
Other hexanes	0.2872	86.18	6.525E-04
Heptanes	0.0720	100.20	1.902E-04
Methylcyclohexane	0.0556	98.19	1.439E-04
Isooctane	0.0028	100.21	7.398E-06
Benzene	0.0123	78.11	2.533E-05
Toluene	0.0165	92.14	4.008E-05
Ethylbenzene	0.0002	106.17	5.598E-07
Xylenes	0.0024	106.17	6.718E-06
C8+ Heavies	0.0187	110.00	5.423E-05
Total	100.0001		
Total VOC			1.307E-02

Gas stream composition obtained from Los Mestenios extended gas analysis dated 05/06/2021 Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.3 scf/lb-mole

Notes:

There were no turbine startups and shutdowns in 2021.

Compressor Blowdown Actual Emissions Calculations

Unit Number: SSM

Description: RICE Compressor & Piping Associated With Station

Throughput

J			
	1	# of units	Ν
	100	events/yr/unit	В
	6,442	scf/event	G
64	44,200	scf/yr	A

Number of units Blowdowns per year per unit Gas loss per blowdown Annual gas loss Harvest Four Corners, LLC Harvest Four Corners, LLC Harvest Four Corners, LLC # of units x events/yr/unit x scf/event

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutants	Factors,	Rates,
	lb/scf	tpy
VOC	1.307E-02	4.21
		/ / / / / /

Emission factors calculated from gas composition (see table below) Uncontrolled Emission Rates (tpy) = scf/yr x lb/scf / 2,000 lb/ton

Gas Composition

	Mole	Molecular	Emission
Components	Percents,	Weights,	Factors,
	%	lb/lb-mole	lb/scf
Carbon dioxide	0.8632	44.01	1.002E-03
Hydrogen sulfide	0.0000	34.07	0.000E+00
Nitrogen	0.4462	28.01	3.295E-04
Methane	78.7294	16.04	3.329E-02
Ethane	10.7901	30.07	8.554E-03
Propane	5.0734	44.09	5.897E-03
Isobutane	0.8940	58.12	1.370E-03
n-Butane	1.5609	58.12	2.392E-03
Isopentane	0.5577	72.15	1.061E-03
n-Pentane	0.4298	72.15	8.176E-04
Cyclopentane	0.0189	70.14	3.495E-05
n-Hexane	0.1299	86.17	2.951E-04
Cyclohexane	0.0389	84.16	8.631E-05
Other hexanes	0.2872	86.18	6.525E-04
Heptanes	0.0720	100.20	1.902E-04
Methylcyclohexane	0.0556	98.19	1.439E-04
Isooctane	0.0028	100.21	7.398E-06
Benzene	0.0123	78.11	2.533E-05
Toluene	0.0165	92.14	4.008E-05
Ethylbenzene	0.0002	106.17	5.598E-07
Xylenes	0.0024	106.17	6.718E-06
C8+ Heavies	0.0187	110.00	5.423E-05
Total	100.0001		
Total VOC			1.307E-02

Gas stream composition obtained from Los Mestenios extended gas analysis dated 05/06/2021Emission Factors (lb/scf) = (% / 100) x lb/lb-mole / 379.3 scf/lb-mole

Notes:

Since the engine is new and there are no startups and shutdowns for 2021, it is assumed there will be 100 events during the year.

Equipment Leaks Actual Emissions Calculations

Unit Number: F1 Description: Valves, Connectors, Seals & Open-Ended Lines

Steady-State Emission Rates

	Number of	Emission	Emission	Uncontro	olled TOC
Equipment	Components,	Factors,	Factors,	Emissio	on Rates,
	# of sources	kg/hr/source	lb/hr/source	pph	tpy
Valves	315	0.0045	0.0099	3.12	13.66
Connectors	263	0.0002	0.0004	0.12	0.51
Pump Seals	0	0.0024	0.0053	0.00	0.00
Compressor Seals	32	0.0088	0.0194	0.62	2.71
Pressure Relief Valves	19	0.0088	0.0194	0.37	1.61
Open-Ended Lines	88	0.0020	0.0044	0.39	1.70
То	otal			4.61	20.19

Number of components based on the numbers of compressors and dehydrators at the station (see next page) Emission factors taken from the EPA "1995 Protocol for Equipment Leak Emission Estimates"

Emission factors (lb/hr/source) = Emission factors (kg/hr/source) x 2.2 lb/kg

Uncontrolled TOC Emission Rates (pph) = lb/hr/source x # of sources

Uncontrolled TOC Emission Rates (tpy) = Uncontrolled TOC Emission Rates (pph) x 8,760 hr/yr / 2,000 lb/ton

	Mole	Molecular	Component	Weight Percent		
Components	Percents,	Weights,	Weights,	of TOC,	Uncontrolled E	mission Rates,
	%	lb/lb-mole	lb/lb-mole	%	pph	tpy
Carbon dioxide	0.8632	44.010				
Hydrogen sulfide	0.0000	34.070				
Nitrogen	0.4462	28.013				
Methane	78.7294	16.043	1263.056	60.619		
Ethane	10.7901	30.070	324.458	15.572		
Propane	5.0734	44.097	223.722	10.737	4.95E-01	2.17E+00
Isobutane	0.8940	58.123	51.962	2.494	1.15E-01	5.03E-01
n-Butane	1.5609	58.123	90.724	4.354	2.01E-01	8.79E-01
Isopentane	0.5577	72.150	40.238	1.931	8.90E-02	3.90E-01
n-Pentane	0.4298	72.150	31.010	1.488	6.86E-02	3.00E-01
Cyclopentane	0.0189	70.134	1.326	0.064	2.93E-03	1.28E-02
n-Hexane	0.1299	86.177	11.194	0.537	2.48E-02	1.08E-01
Cyclohexane	0.0389	84.161	3.274	0.157	7.24E-03	3.17E-02
Other hexanes	0.2872	86.177	24.750	1.188	5.47E-02	2.40E-01
Heptanes	0.0720	100.204	7.215	0.346	1.60E-02	6.99E-02
Methylcyclohexane	0.0556	98.188	5.459	0.262	1.21E-02	5.29E-02
Isooctane	0.0028	114.231	0.320	0.015	7.07E-04	3.10E-03
Benzene	0.0123	78.114	0.961	0.046	2.13E-03	9.31E-03
Toluene	0.0165	92.141	1.520	0.073	3.36E-03	1.47E-02
Ethylbenzene	0.0002	106.167	0.021	0.001	4.70E-05	2.06E-04
Xylenes	0.0024	106.167	0.255	0.012	5.64E-04	2.47E-03
C8+ Heavies	0.0187	114.231	2.136	0.103	4.72E-03	2.07E-02
Total	100.0001		2083.601			
Total VOC				23.809	1.10	4.81

Gas stream composition obtained from Los Mestenios extended gas analysis dated 05/06/2021

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

Uncontrolled Emission Rates (pph) = Total Uncontrolled TOC Emission Rate (pph) x (% / 100)

Uncontrolled Emission Rates (tpy) = Total Uncontrolled TOC Emission Rate (tpy) x (% / 100)

Equipment Leaks Actual Emissions Calculations

Unit Number: F1

Description: Valves, Connectors, Seals & Lines

Number of Compression Units at the Facility:2Number of Dehydrators at the Facility:0

	Equipment Count			Ins	strument Co	unt			
					Pressure				
Process Equipment Description			Pump	Compressor	Relief				
	Valves	Connectors	Seals	Seals	Valves	Open-end	Flow	Level	Pressure
Station inlet, meter run to pulsation dampener	17	14	0	0	1	13	3	0	3
Pulsation dampener	12	8	0	0	0	2	0	4	1
Compressor suction header	7	4	0	0	0	3	0	0	1
Suction header feed to instrument gas header	3	1	0	0	0	1	0	0	0
Compressor discharge header and bypass to station discharge	6	5	0	0	0	3	0	1	1
Compressor discharge header and suction header bypass lines	4	2	0	0	0	2	0	0	1
Fuel gas header	2	2	0	0	1	2	0	0	1
Instrument gas header	2	2	0	0	1	2	0	0	0
Station discharge header	9	5	0	0	1	6	0	0	2
Fuel gas recovery header	2	2	0	0	1	2	0	0	0
Fuel gas feed and filter loop	15	9	0	0	0	1	0	4	1
Instrument gas feed and filter loop	9	11	0	0	0	3	0	0	0
Produced water storage tank	1	0	0	0	0	1	0	1	0
ESD panel	12	0	0	0	0	0	0	0	0
Starting gas header	6	2	0	0	1	3	0	0	0
Hot gas header	2	2	0	0	0	2	0	0	0
Volume bottle lop	12	4	0	24	1	2	0	0	1
Components from Compressors	88	118	0	8	12	22	0	8	18
Components from dehydrators	0	0	0	0	0	0	0	0	0
Total	209	191	0	32	19	70	3	18	30
Adjusted Total	315	263	0	32	19	88			

The following additions are included in the Adjusted Total:

1 valve is added for each open end line

2 connectors are added for each flow meter

2 valves, 2 connectors and 1 open end line are added for each level gauge

1 connector is added for each pressure gauge

The component count is based on an evaluation of the Sim Mesa Compressor Station (two stage compression)

Truck Loading (Condensate) Actual Emissions Calculations

Unit Number: L1 Description: Truck Loading

Emission Factor

0.6	Saturation factor, S	AP-42, Table 5.2-1 (submerged loading & dedicated service)
2.28 psia	True vapor pressure of liquid, P	TANKS 4.0 output file
78.1 lb/lb-mole	Molecular weight of vapors, M	TANKS 4.0 output file
65 °F	Temperature of liquid	TANKS 4.0 output file
524.6 °R	Temperature of liquid, T	°F + 459.67
2.54 lb/10 ³ gal	Emission factor, L	AP-42, Section 5.2, Equation 1
C C		L =12.46 (SPM/T)

Production Rate

145.60 10^3 gal/yr

Maximum annual production rate

(= 21,000 bbl/yr, which is approx. max historical throughput plus 10%)

Harvest Four Corners, LLC

Steady-State Emission Rates

	Emission
Pollutant	Rates,
	tpy
VOC	1.85E-01

Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

Truck Loading (Produced Water) Actual Emissions Calculations

Unit Number: L2 Description: Truck Loading

Emission Factor

0.6	Saturation factor, S	AP-42, Table 5.2-1 (submerged loading & dedicated service)
0.3045 psia (average)	True vapor pressure of liquid, P	Estimated using Antoine's Equation (see calculations below)
18.02 lb/lb-mole	Molecular weight of vapors, M	TANKS 4.0 Database
65 °F (average)	Temperature of liquid	Estimated (see calculations below)
524.67 °R (average)	Temperature of liquid, T	°F + 459.67
0.08 lb/10 ³ gal (average)	Emission factor, L	AP-42, Section 5.2, $L = 12.46 \frac{SPM}{T}$

Production Rate

5.53 10^3 gal/yr

Maximum annual production rate

Harvest Four Corners, LLC

Steady-State Emission Rates

Pollutant	Emission Rates,				
	tpy				
VOC	2.16E-04				
Uncontrolled Emission Rate (tny)					

Uncontrolled Emission Rate (tpy) = lb/10^3 gal x 10^3 gal/yr / 2,000 lb/ton

Vapor Pressure of Produced Water:

It is estimated that the true vapor pressure of produced water is approximately equal to the true vapor pressure of pure water. An estimate of the true vapor pressure for water is calculated using Antoine's equation (see AP-42, Section 7.1, Equation 1-25).

Average:

Temperature = 65 °Flog P = A - (B / (C + T)) A = 8.07131 B = 1730.63 C = 233.426 T = 18.33 °C P = mmHg P = 10^(A - (B / (C + T))

P =	15.75 mmHg
P =	0.3045 psi

Note: 760 mmHg = 14.7 psia

Storage Tank Actual Emissions Data and Calculations

Unit Number: T1 & T2

Description: Condensate Storage Tanks

Emission Rates

Source/Pollutants	Working/Breat ppy	hing Losses, tpy	Flash Losses, tpy	Uncontrolled Emission Rates, tpy
T1 VOC	3,361.70	1.68	7.01	8.69
T2 VOC	2,937.44	1.47		1.47

Working/breathing losses taken from TANKS 4.0 results

Flash VOC emissions taken from VMGSim results

Flash HAP emissions calculated from the flash VOC emissions and the weight % HAP (calculated in the table below) Unit T2 does not have flash emissions because it is an overflow tank for Unit T1. All flashing occurs in Unit T1.

Condensate Composition (To Determine Working/Breathing Losses)

	Mole	Molecular	Component	Weight	
Components	Percents,	Weights,	Weights,	Percent,	
	%	lb/lb-mole	lb/lb-mole	%	
Carbon dioxide	0.0016	44.010			
Hydrogen sulfide	0.0000	34.070			
Nitrogen	0.0016	28.013			
Water	10.3467	18.015	186.3954	1.9609	
Methane	0.2398	16.043	3.8476	0.0405	
Ethane	0.2647	30.070	7.9592	0.0837	
Propane	0.3284	44.097	14.4797	0.1523	
Isobutane	1.3530	58.123	78.6407	0.8273	
n-Butane	4.0043	58.123	232.7417	2.4485	
Isopentane	5.2914	72.150	381.7734	4.0163	
n-Pentane	4.7618	72.150	343.5631	3.6143	
Cyclopentane	0.0479	70.134	3.3588	0.0353	
n-Hexane	7.2009	86.177	620.5560	6.5283	
Cyclohexane	4.2312	84.161	356.1035	3.7463	
Other hexanes	0.0000	86.177	0.0000	0.0000	
Heptanes	12.0651	100.204	1208.9690	12.7185	
Methylcyclohexane	9.4637	98.188	929.2256	9.7756	
Isooctane	0.3125	114.231	35.7007	0.3756	
Benzene	1.1780	78.114	92.0162	0.9680	
Toluene	0.4530	92.141	41.7421	0.4391	
Ethylbenzene	0.4864	106.167	51.6357	0.5432	
Xylenes	3.3752	106.167	358.3340	3.7697	
n-Octane	10.1150	114.232	1155.4546	12.1555	
n-Nonane	5.6876	128.259	729.4821	7.6743	
n-Decane	18.7903	142.286	2673.5942	28.1266	
Total	100.0000		9505.5736	100.0000	

Gas stream composition obtained from VGMSym output

Component Weights (lb/lb-mole) = (% / 100) * Molecular Weights (lb/lb-mole)

Weight Percent of TOC (%) = 100 x Component Weights (lb/lb-mole) / Total Component Weight (lb/lb-mole)

In TANKS 4, the methane, ethane, and propane percentages are included with isobutane and n-butane (an even distribution)

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Identification	
User Identification:	Los Mestenios - T1 - Condensate ACT
City:	Gavilan
State:	New Mexico
Company:	Harvest Four Corners, LLC
Type of Tank:	Vertical Fixed Roof Tank
Description:	490 Barrel Condensate Storage Tank
Tank Dimensions	
Shell Height (ft):	16.00
Diameter (ft):	14.75
Liquid Height (ft) :	15.00
Avg. Liquid Height (ft):	7.50
Volume (gallons):	19,173.00
Turnovers:	7.60
Net Throughput(gal/yr):	145,596.00
Is Tank Heated (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
Roof Color/Shade:	Gray/Medium
Roof Condition:	Good
Roof Characteristics	2
Type:	Dome
Height (ft)	0.00
Radius (ft) (Dome Roof)	14.75
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Los Mestenios - T1 - Condensate ACT - Vertical Fixed Roof Tank Gavilan, New Mexico

			aily Liquid S operature (d		Liquid Bulk Temp	Vapo	or Pressure (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/lixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	3.4523	2.6161	4.3471	66.3334			95.42	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0038	0.0011	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0097	0.0058	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						29.9357	23.3576	34.6684	58.1230	0.0259	0.3227	58.12	Option 1: VP60 = 26.1 VP70 = 31.31
Cyclohexane						1.4738	1.0254	2.0729	84.1600	0.0375	0.0230	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Cyclopentane						4.9596	3.6370	6.6394	70.1300	0.0004	0.0007	70.13	Option 1: VP60 = 4.177 VP70 = 5.24
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.2813	0.0046	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.1272	0.0403	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.0653	0.0628	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Iso-Butane						43.3083	34.4026	53.8185	58.1230	0.0097	0.1743	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0402	0.1985	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Methylcyclohexane						0.6886	0.4673	0.9913	98.1800	0.0978	0.0280	98.18	Option 2: A=6.823, B=1270.763, C=221.42
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.0767	0.0025	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.1216	0.0090	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0361	0.1209	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0044	0.0008	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.3402	0.2160	0.5229	18.0150	0.0196	0.0028	18.02	Option 1: VP60 = .263 VP70 = .3679
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0377	0.0018	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Los Mestenios - T1 - Condensate ACT - Vertical Fixed Roof Tank Gavilan, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	2,577.2156
Vapor Space Volume (cu ft):	1,625.2961
Vapor Density (lb/cu ft):	0.0405
Vapor Space Expansion Factor:	0.2940
Vented Vapor Saturation Factor:	0.3649
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,625.2961
Tank Diameter (ft):	14.7500
Vapor Space Outage (ft):	9.5117
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	1.0117
Roof Outage (Dome Roof)	
Roof Outage (ft):	1.0117
Dome Radius (ft):	14.7500
Shell Radius (ft):	7.3750
Vapor Density Vapor Density (lb/cu ft):	0.0405
Vapor Molecular Weight (lb/lb-mole):	66.3334
Vapor Pressure at Daily Average Liquid	00.0004
Surface Temperature (psia):	3,4523
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	00.1012
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2940
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.7309
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4523
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.6161
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.3471
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3649
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.4523
Vapor Space Outage (ft):	9.5117
	700 0500
Working Losses (Ib):	793.8586

Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	66.3334	
Surface Temperature (psia):	3.4523	
Annual Net Throughput (gal/yr.):	145,596.0000	
Annual Turnovers:	7.6000	
Turnover Factor:	1.0000	
Maximum Liquid Volume (gal):	19,173.0000	
Maximum Liquid Height (ft):	15.0000	
Tank Diameter (ft):	14.7500	
Working Loss Product Factor:	1.0000	
Total Losses (lb):	3,371.0743	

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Los Mestenios - T1 - Condensate ACT - Vertical Fixed Roof Tank Gavilan, New Mexico

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Condensate	793.86	2,577.22	3,371.07				
Iso-Butane	138.34	449.12	587.46				
Water	2.21	7.16	9.37				
Butane (-n)	256.15	831.58	1,087.73				
Isopentane	157.62	511.69	669.30				
Pentane (-n)	96.01	311.70	407.71				
Cyclopentane	0.58	1.88	2.46				
Hexane (-n)	49.88	161.94	211.82				
Cyclohexane	18.26	59.29	77.56				
Heptane (-n)	31.97	103.80	135.78				
Methylcyclohexane	22.27	72.28	94.55				
2,2,4-Trimethylpentane (isooctane)	0.91	2.96	3.87				
Benzene	4.57	14.84	19.41				
Toluene	0.60	1.95	2.55				
Ethylbenzene	0.25	0.81	1.07				
Xylenes (mixed isomers)	1.45	4.72	6.17				
Octane (-n)	7.11	23.10	30.21				
Nonane (-n)	1.99	6.46	8.45				
Decane (-n)	3.68	11.93	15.61				

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

User Identification: City: State: Company: Type of Tank: Description:	Los Mestenios - T2 - Condensate ACT Gavilan New Mexico Harvest Four Corners, LLC Vertical Fixed Roof Tank 400 Barrel Condensate Storage Tank
Tank Dimensions Shell Height (ft): Diameter (ft): Liquid Height (ft) : Avg. Liquid Height (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n):	16.00 13.50 15.00 7.50 16,061.00 9.07 145,596.00 N
Paint Characteristics Shell Color/Shade: Shell Condition Roof Color/Shade: Roof Condition:	Gray/Medium Good Gray/Medium Good
Roof Characteristics Type: Height (ft) Radius (ft) (Dome Roof)	Dome 0.00 13.50
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.03 0.03

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

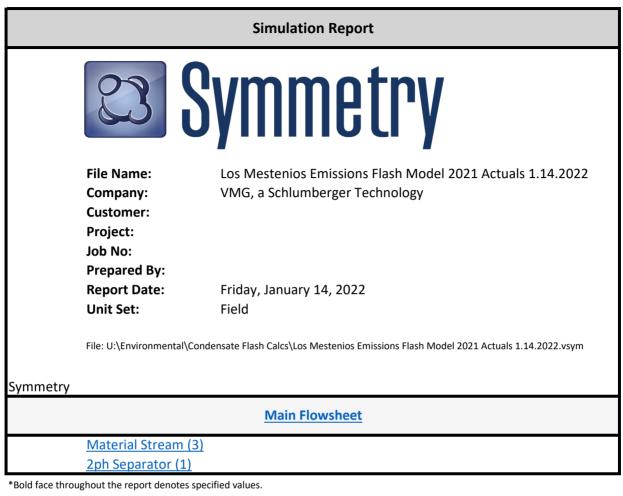
Los Mestenios - T2 - Condensate ACT - Vertical Fixed Roof Tank Gavilan, New Mexico

			aily Liquid S operature (d		Liquid Bulk Temp	Vapo	or Pressure (psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
/lixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Condensate	All	67.36	53.93	80.79	59.23	3.4523	2.6161	4.3471	66.3334			95.42	
2,2,4-Trimethylpentane (isooctane)						0.7338	0.4989	1.0546	114.2300	0.0038	0.0011	114.23	Option 2: A=6.8118, B=1257.84, C=220.74
Benzene						1.4274	0.9846	2.0237	78.1100	0.0097	0.0058	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Butane (-n)						29.9357	23.3576	34.6684	58.1230	0.0259	0.3227	58.12	Option 1: VP60 = 26.1 VP70 = 31.31
Cyclohexane						1.4738	1.0254	2.0729	84.1600	0.0375	0.0230	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Cyclopentane						4.9596	3.6370	6.6394	70.1300	0.0004	0.0007	70.13	Option 1: VP60 = 4.177 VP70 = 5.24
Decane (-n)						0.0395	0.0291	0.0536	142.2900	0.2813	0.0046	142.29	Option 1: VP60 = .033211 VP70 = .041762
Ethylbenzene						0.1396	0.0876	0.2162	106.1700	0.0054	0.0003	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Heptane (-n)						0.7600	0.5088	1.1128	100.2000	0.1272	0.0403	100.20	Option 3: A=37358, B=8.2585
Hexane (-n)						2.3100	1.6303	3.2059	86.1700	0.0653	0.0628	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Iso-Butane						43.3083	34.4026	53.8185	58.1230	0.0097	0.1743	58.12	Option 1: VP60 = 38.14 VP70 = 45.16
Isopentane						11.8640	8.7212	15.5743	72.1500	0.0402	0.1985	72.15	Option 1: VP60 = 10.005 VP70 = 12.53
Methylcyclohexane						0.6886	0.4673	0.9913	98.1800	0.0978	0.0280	98.18	Option 2: A=6.823, B=1270.763, C=221.42
Nonane (-n)						0.0784	0.0568	0.1080	128.2600	0.0767	0.0025	128.26	Option 1: VP60 = .065278 VP70 = .08309
Octane (-n)						0.1769	0.1254	0.2493	114.2300	0.1216	0.0090	114.23	Option 1: VP60 = .145444 VP70 = .188224
Pentane (-n)						8.0308	5.9649	10.6537	72.1500	0.0361	0.1209	72.15	Option 3: A=27691, B=7.558
Toluene						0.4136	0.2726	0.6120	92.1300	0.0044	0.0008	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Water						0.3402	0.2160	0.5229	18.0150	0.0196	0.0028	18.02	Option 1: VP60 = .263 VP70 = .3679
Xylenes (mixed isomers)						0.1165	0.0728	0.1813	106.1700	0.0377	0.0018	106.17	Option 2: A=7.009, B=1462.266, C=215.11

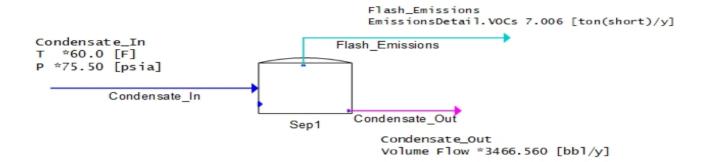
TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Los Mestenios - T2 - Condensate ACT - Vertical Fixed Roof Tank Gavilan, New Mexico

Annual Emission Calcaulations	
Standing Losses (lb):	2,151.7664
Vapor Space Volume (cu ft):	1,349.2223
Vapor Density (lb/cu ft):	0.0405
Vapor Space Expansion Factor:	0.2940
Vented Vapor Saturation Factor:	0.3670
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	1,349.2223
Tank Diameter (ft):	13.5000
Vapor Space Outage (ft):	9.4260
Tank Shell Height (ft):	16.0000
Average Liquid Height (ft):	7.5000
Roof Outage (ft):	0.9260
Roof Outage (Dome Roof)	
Roof Outage (ft):	0.9260
Dome Radius (ft):	13.5000
Shell Radius (ft):	6.7500
Vapor Density	
Vapor Density (lb/cu ft):	0.0405
Vapor Molecular Weight (lb/lb-mole):	66.3334
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4523
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Tank Paint Solar Absorptance (Roof):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vapor Space Expansion Factor	
Vapor Space Expansion Factor:	0.2940
Daily Vapor Temperature Range (deg. R):	53.7176
Daily Vapor Pressure Range (psia):	1.7309
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	3.4523
Vapor Pressure at Daily Minimum Liquid	
Surface Temperature (psia):	2.6161
Vapor Pressure at Daily Maximum Liquid	
Surface Temperature (psia):	4.3471
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.3670
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	3.4523
Vapor Space Outage (ft):	9.4260
Working Losses (lb):	793.8586


Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liguid	66.3334
Surface Temperature (psia):	3,4523
Annual Net Throughput (gal/yr.):	145,596.0000
Annual Turnovers:	9.0700
Turnover Factor:	1.0000
Maximum Liquid Volume (gal):	16,061.0000
Maximum Liquid Height (ft):	15.0000
Tank Diameter (ft):	13.5000
Working Loss Product Factor:	1.0000
Total Losses (lb):	2,945.6250

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals


Emissions Report for: Annual

Los Mestenios - T2 - Condensate ACT - Vertical Fixed Roof Tank Gavilan, New Mexico

	Losses(lbs)						
Components	Working Loss	Breathing Loss	Total Emissions				
Condensate	793.86	2,151.77	2,945.63				
Iso-Butane	138.34	374.98	513.32				
Butane (-n)	256.15	694.30	950.45				
Isopentane	157.62	427.22	584.83				
Pentane (-n)	96.01	260.24	356.25				
Cyclopentane	0.58	1.57	2.15				
Hexane (-n)	49.88	135.21	185.09				
Cyclohexane	18.26	49.50	67.77				
Heptane (-n)	31.97	86.67	118.64				
Methylcyclohexane	22.27	60.35	82.62				
2,2,4-Trimethylpentane (isooctane)	0.91	2.47	3.38				
Benzene	4.57	12.39	16.96				
Toluene	0.60	1.63	2.23				
Ethylbenzene	0.25	0.68	0.93				
Xylenes (mixed isomers)	1.45	3.94	5.39				
Octane (-n)	7.11	19.28	26.40				
Nonane (-n)	1.99	5.39	7.38				
Decane (-n)	3.68	9.96	13.64				
Water	2.21	5.98	8.19				

*Italic face throughout the report denotes recycle values.

	/Cond	densate_In	(Material St	ream)	
Thermo Model: APRNGL2			•	-	
		Conne	ections		
		Materi	al Inlets		
	Connection			Up Stream Unit Op	
In	<disconne< td=""><td></td><td></td><td></td><td></td></disconne<>				
			l Outlets		
	Connection		loutets	Down Stream Unit Op	
Out	Sep1.In0				
	_ <u>_</u>	Allocation / Pro	oduct Allocation		
Auto Calculate		False	Is Up To Date		False
Status		Y?No Results			
		Eauilibriu	Im Results		
		Bulk	Vap	Liq0	Liq1
Phase Frac [Fraction]		1.00	0.0357	0.8681	0.0962
T [F]		60.0	60.0	60.0	60.0
P [psia]		75.50	75.50	75.50	75.50
Mole Flow [lbmol/h]		1.10	0.04	0.96	0.11
Mass Flow [lb/h]		102.98	0.79	100.28	1.91
Fraction [Fraction]		102.50	0.75	100.20	1.51
NITROGEN		0.0012	0.0290	2.02E-04	1.66E-06
METHANE		0.0497	0.8514	0.0222	1.06E-04
CARBON DIOXIDE		1.14E-04	0.0011	8.69E-05	3.25E-06
ETHANE		0.0102	0.0547	0.0094	1.01E-05
PROPANE		0.0056	0.0095	0.0060	1.16E-06
ISOBUTANE		0.0164	0.0110	0.0184	7.48E-07
n-BUTANE		0.0443	0.0196	0.0503	1.96E-06
ISOPENTANE		0.0523	0.0088	0.0599	5.00E-07
n-PENTANE		0.0462	0.0058	0.0530	4.94E-07
CYCLOPENTANE		4.53E-04	2.94E-05	5.21E-04	1.89E-08
n-HEXANE		0.0672	0.0023	0.0773	1.88E-07
METHYLCYCLOHEXANE		0.0873	7.77E-04	0.1006	3.16E-07
2,2,4-TRIMETHYLPENTANE		0.0029	3.05E-05	0.0033	8.33E-10
BENZENE		0.0110	3.11E-04	0.0126	5.85E-06
CYCLOHEXANE		0.0393	8.42E-04	0.0452	5.71E-07
n-HEPTANE		0.1114	0.0011	0.1283	6.65E-08
TOLUENE		0.0042	3.12E-05	0.0048	5.98E-07
n-OCTANE		0.0931	2.98E-04	0.1072	1.07E-08
ETHYLBENZENE		0.0045	1.17E-05	0.0052	1.82E-07
m-XYLENE		0.0214	4.29E-05	0.0247	7.30E-07
o-XYLENE		0.0096	1.50E-05	0.0111	4.18E-07
n-NONANE		0.0523	5.14E-05	0.0603	5.30E-09
n-DECANE		0.0024	7.43E-07	0.0028	1.01E-10
n-UNDECANE		0.0852	7.34E-06	0.0981	1.30E-09
n-DODECANE		0.0852	2.31E-06	0.0981	6.25E-10
WATER		0.0967	0.0034	4.10E-04	0.9999

	/Conder	nsate_Out	(Material S	tream)	
Thermo Model: APRNGL2	-		•	•	
		Conne	ections		
		Matori	al Inlets		
In	Connection Sep1.Liq0			Up Stream Unit Op 	
		Materia	l Outlets		
	Connection	materia		Down Stream Unit Op	
Out	<disconnecte< td=""><td>d></td><td></td><td></td><td></td></disconnecte<>	d>			
		Allocation / Pro	oduct Allocation		
Auto Calculate	Fa	lse	Is Up To Date		False
Status	Y?	No Results			
		Equilibriu	m Results		
	Bi	Ik	Vap	Liq0	Liq1
Phase Frac [Fraction]		1.00	0.00	1.00	
T [F]		60.0	60.0	60.0	
P [psia]		13.00	13.00	13.00	
Mole Flow [lbmol/h]		1.01	0.00	1.01	
Mass Flow [lb/h]		100.21	0.00	100.21	
Fraction [Fraction]					
NITROGEN		1.58E-05	0.0148	1.58E-05	
METHANE		0.0024	0.5885	0.0024	
CARBON DIOXIDE		1.59E-05	0.0012	1.59E-05	
ETHANE		0.0026	0.0957	0.0026	
PROPANE		0.0033	0.0316	0.0033	
ISOBUTANE		0.0135	0.0487	0.0135	
n-BUTANE		0.0400	0.0932	0.0400	
ISOPENTANE		0.0529	0.0456	0.0529	
n-PENTANE		0.0476	0.0304	0.0476	
CYCLOPENTANE		4.79E-04	1.58E-04	4.79E-04	
n-HEXANE		0.0720	0.0121	0.0720	
METHYLCYCLOHEXANE		0.0946	0.0041	0.0946	
2,2,4-TRIMETHYLPENTANE		0.0031	1.60E-04	0.0031	
BENZENE		0.0118	0.0017	0.0118	
CYCLOHEXANE		0.0423	0.0045	0.0423	
n-HEPTANE		0.1207	0.0061	0.1207	
TOLUENE		0.0045	1.66E-04	0.0045	
n-OCTANE		0.1011	0.0015	0.1011	
ETHYLBENZENE		0.0049	6.13E-05	0.0049	
m-XYLENE		0.0233	2.24E-04	0.0233	
o-XYLENE		0.0105	7.81E-05	0.0105	
n-NONANE		0.0569	2.62E-04	0.0569	
		0.0026	3.70E-06	0.0026	
n-UNDECANE n-DODECANE		0.0926	3.58E-05 1.10E-05	0.0926	
		0.0926		0.0926	
WATER		0.1035	0.0191	0.1035	

	/Flash	Emissions	(Material S	tream)	
Thermo Model: APRNGL2	-	_	•	•	
		Conne	ections		
		Matari	al Inlets		
In	Connection Sep1.Vap	I		Up Stream Unit Op 	
	Зерт. Мар	Matoria	l Outlets		
	Connectior		loullets	Down Stream Unit Op	
Out	<disconnee< td=""><td></td><td></td><td></td><td></td></disconnee<>				
	(Disconne)		oduct Allocation		
Auto Calculate		False	Is Up To Date		False
Status		Y?No Results			
		I			1
		Equilibriu	ım Results		
		Bulk	Vap	Liq0	Liq1
Phase Frac [Fraction]		1.00	1.00	0.00	
T [F]		60.0	60.0	60.0	
P [psia]		13.00	13.00	13.00	
Mole Flow [lbmol/h]		0.09	0.09	0.00	
Mass Flow [lb/h]		2.77	2.77	0.00	
Fraction [Fraction]					
NITROGEN		0.0148	0.0148	1.58E-05	
METHANE		0.5885	0.5885	0.0024	
CARBON DIOXIDE		0.0012	0.0012	1.59E-05	
ETHANE		0.0957	0.0957	0.0026	
PROPANE		0.0316	0.0316	0.0033	
ISOBUTANE		0.0487	0.0487	0.0135	
n-BUTANE		0.0932	0.0932	0.0400	
ISOPENTANE		0.0456	0.0456	0.0529	
n-PENTANE		0.0304	0.0304	0.0476	
CYCLOPENTANE		1.58E-04	1.58E-04	4.79E-04	
n-HEXANE		0.0121	0.0121	0.0720	
METHYLCYCLOHEXANE		0.0041	0.0041	0.0946	
2,2,4-TRIMETHYLPENTANE		1.60E-04	1.60E-04	0.0031	
BENZENE		0.0017	0.0017	0.0118	
CYCLOHEXANE		0.0045	0.0045	0.0423	
n-HEPTANE		0.0061		0.1207	
TOLUENE		1.66E-04		0.0045	
n-OCTANE		0.0015		0.1011	
ETHYLBENZENE		6.13E-05		0.0049	
m-XYLENE		2.24E-04		0.0233	
o-XYLENE		7.81E-05		0.0105	
n-NONANE		2.62E-04		0.0569	
n-DECANE		3.70E-06		0.0026	
n-UNDECANE		3.58E-05		0.0926	
n-DODECANE		1.10E-05		0.0926	
WATER		0.0191	0.0191	0.1035	

Storage Tank Actual Emissions Calculations

Unit Number: T3 Description: Produced Water Tank

Note: The data on this worksheet applies to each individual emissions unit identified above.

Throughput

70 bbl/turnover	Tank capacity
1.88 turnover/yr	Turnovers per year
132 bbl/yr	Annual liquid throughput

Harvest Four Corners, LLC Harvest Four Corners, LLC bbl/turnover x turnover/yr

Emission Rates

		Uncontrolled,
	Emission	Emission
Pollutant	Factor,	Rate,
	lb/bbl	tpy
VOC	0.262	1.72E-02

VOC emission factor is taken from the CDPHE PS Memo 09-02 (Oil & Gas Produced Water Tank Batteries - Regulatory Definitions & Permitting Guidance)

Uncontrolled Emission Rates (tpy) = lb/bbl x bbl/yr / 2,000 lb/ton

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification

Pressure Settings (psig)

Identification	
User Identification:	Los Mestenios - T7 - Methanol
City:	Gavilan
State:	New Mexico
Company:	Harvest Four Corners, LLC
	Horizontal Tank
Type of Tank:	
Description:	500 Gallon Methanol Storage Tank
Tank Dimensions	
Shell Length (ft):	6.00
Diameter (ft):	4.00
Volume (gallons):	500.00
Turnovers:	12.00
Net Throughput(gal/yr):	6,000.00
	,
Is Tank Heated (y/n):	N
Is Tank Underground (y/n):	Ν
Paint Characteristics	
Shell Color/Shade:	Gray/Medium
Shell Condition	Good
	0000
Breather Vent Settings	
Vacuum Settings (psig):	-0.03
Dracours Cattings (noig)	0.02

Meterological Data used in Emissions Calculations: Albuquerque, New Mexico (Avg Atmospheric Pressure = 12.15 psia)

0.03

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Los Mestenios - T7 - Methanol - Horizontal Tank Gavilan, New Mexico

			ily Liquid Su perature (de		Liquid Bulk Temp	Vapo	r Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Methyl alcohol	All	67.36	53.93	80.79	59.23	1.8115	1.1881	2.6951	32.0400			32.04	Option 2: A=7.897, B=1474.08, C=229.13

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Los Mestenios - T7 - Methanol - Horizontal Tank Gavilan, New Mexico

Annual Emission Calcaulations	
Standing Losses (Ib):	36.5024
Vapor Space Volume (cu ft):	48.0243
Vapor Density (lb/cu ft):	0.0103
Vapor Space Expansion Factor:	0.2419
Vapor Space Expansion Factor:	0.8389
vented vapor Saturation ractor.	0.0509
Tank Vapor Space Volume:	
Vapor Space Volume (cu ft):	48.0243
Tank Diameter (ft):	4.0000
Effective Diameter (ft):	5.5293
Vapor Space Outage (ft):	2.0000
Tank Shell Length (ft):	6.0000
Vapor Density	
Vapor Density (lb/cu ft):	0.0103
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	
Surface Temperature (psia):	1.8115
Daily Avg. Liquid Surface Temp. (deg. R):	527.0322
Daily Average Ambient Temp. (deg. F):	56.1542
Ideal Gas Constant R	
(psia cuft / (lb-mol-deg R)):	10.731
Liquid Bulk Temperature (deg. R):	518.9042
Tank Paint Solar Absorptance (Shell):	0.6800
Daily Total Solar Insulation	
Factor (Btu/sqft day):	1,765.3167
Vanar Shaap Expansion Factor	
Vapor Space Expansion Factor	0.2410
Vapor Space Expansion Factor:	0.2419
Daily Vapor Temperature Range (deg. R):	53.7176 1.5070
Daily Vapor Pressure Range (psia):	
Breather Vent Press. Setting Range(psia):	0.0600
Vapor Pressure at Daily Average Liquid	1 9115
Surface Temperature (psia):	1.8115
Vapor Pressure at Daily Minimum Liquid	1,1881
Surface Temperature (psia):	1.1001
Vapor Pressure at Daily Maximum Liquid	2.6951
Surface Temperature (psia):	
Daily Avg. Liquid Surface Temp. (deg R):	527.0322
Daily Min. Liquid Surface Temp. (deg R):	513.6028
Daily Max. Liquid Surface Temp. (deg R):	540.4617
Daily Ambient Temp. Range (deg. R):	27.9250
Vented Vapor Saturation Factor	
Vented Vapor Saturation Factor:	0.8389
Vapor Pressure at Daily Average Liquid:	
Surface Temperature (psia):	1.8115
Vapor Space Outage (ft):	2.0000
Working Losses (Ib):	8.2917
Vapor Molecular Weight (lb/lb-mole):	32.0400
Vapor Pressure at Daily Average Liquid	02.0400
Surface Temperature (psia):	1.8115
Annual Net Throughput (gal/yr.):	6,000.0000
Annual Turnovers:	12.0000
Turnover Factor:	1.0000
	1.0000

TANKS 4.0 Report

Tank Diameter (ft):	4.0000
Working Loss Product Factor:	1.0000
Total Losses (Ib):	44.7941

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Los Mestenios - T7 - Methanol - Horizontal Tank Gavilan, New Mexico

	Losses(lbs)							
Components	Working Loss	Breathing Loss	Total Emissions					
Methyl alcohol	8.29	36.50	44.79					

This Page Intentionally Left Blank

Section 4

Federal Regulations Applicability

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Does Not Apply	JUSTIFICATION:
40 CFR 50	NAAQS	\checkmark			This regulation is applicable because it applies to all sources in the United States.
NSPS 40 CFR 60, Subpart A	General Provisions		1, 2 & F1		This regulation is applicable because 40 CFR Part 60 Subpart GG is applicable.
NSPS 40 CFR 60, Subpart K	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After June 11, 1973, and Prior to May 19, 1978			¥	This regulation is not applicable because the petroleum liquids storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110(a)).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984			×	This regulation is not applicable because the storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 40,000 gallons (see §60.110a(a)).
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After July 23, 1984			~	This regulation is not applicable because all storage tanks at the facility have capacities less than the minimum applicability threshold capacity of 75 cubic meters (19,812 gallons), or they have a capacity between 75 and 151 cubic meters (40,000 gallons) and store a liquid with a maximum true vapor pressure less than 15.0 kPa (2.2 psi), or store petroleum prior to custody transfer (see §60.110b(a) & §60.110b(b) & §60.110b(d)(4)).
NSPS 40 CFR, Subpart GG	Standards of Performance for Stationary Gas Turbines		1		The regulation is applicable as the facility is equipped with a stationary gas turbine with heat input equal to 10 MMBtu/hour or greater, installed on or after October 3, 1977.

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Does Not Apply	JUSTIFICATION:
NSPS 40 CFR 60, Subpart KKK	Standards of Performance for Equipment Leaks of VOC from Onshore Gas Plants			~	This regulation is not applicable because the facility is not an onshore natural gas processing plant as defined by the subpart (see §60.630(a)(1)). Natural gas processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both (see §60.631).
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions			~	This regulation is not applicable because the facility is not a natural gas processing plant as defined by the subpart. It is not equipped with a sweetening unit (see §60.640(a)).
NSPS 40 CFR 60, Subpart IIII	Standards of Performance for Stationary Compression Ignition Internal Combustion Engines			V	This regulation is not applicable because the facility is not equipped with stationary compression ignition (CI) internal combustion engines (ICE) that commenced construction after July 11, 2005 and were manufactured after April 1, 2006 (see §60.4200(a)(2)(i)). For the purpose of this subpart, construction commences on the date the engine is ordered by the owner or operator (see §60.4200(a)).
NSPS 40 CFR 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines			~	This regulation is not applicable because the facility is not equipped with spark ignition (SI) internal combustion engines (ICE) constructed, modified, or reconstructed after June 12, 2006. Units 2 & 3 were constructed prior to the applicability date and have not been modified or reconstructed. See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO below.
NSPS 40 CFR 60 Subpart OOOO	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution			~	 This regulation referenced in Subpart OOOO below. This regulation is not applicable because the facility is not equipped with "affected" sources that commenced construction, modification or reconstruction after August 23, 2011 and on or before September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, and storage vessels (see §60.5365). Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430). Commenced construction means a continuous program of fabrication, erection or installation (see §60.2). Modification means any physical change in or change in the method of operation of an existing facility which increases emissions or results in new emissions (see §60.2). The following, by themselves, are not modifications: routine maintenance, repair or replacement, production increase without capital expenditure, increase in hours of operation, addition of emission controls, or the relocation or change in ownership of an existing facility (see §60.14). Reconstruction means the replacement of components of an existing facility such that the fixed capital cost required to construct a comparable entirely new facility. Fixed capital cost means the capital needed to provide all the depreciable components (see §60.15).
NSPS 40 CFR 60, Subpart	Standards of Performance for Crude Oil and		2 & F1		This regulation is not applicable because the facility is not equipped with "affected" sources that commenced

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Does Not Apply	JUSTIFICATION:
OOOOa	Natural Gas Facilities for which Construction, Modification or				construction, modification or reconstruction after September 18, 2015: gas wells, centrifugal or reciprocating compressors, pneumatic controllers, storage vessels, sweetening units, pneumatic pumps, and equipment leaks (see §60.5365a).
	Reconstruction Commenced				In general, this regulation may apply if existing affected equipment is replaced or new affected equipment is installed.
	After September 18, 2015				In particular, this regulation will apply to fugitive emissions components at the facility if any engines and compressors are installed. Fugitive components monitoring is required if a compressor station is modified. For the purpose of fugitive components monitoring as required by this subpart, modification of a compressor station is the addition of a compressor or replacement of a compressor with a larger unit (greater total horsepower) (see §60.5365a(j)).
					Note that the facility is not a natural gas processing plant as defined by the subpart (see §60.5430a).
					See the definitions of construction, modification, and reconstruction referenced in Subpart OOOO above.
					Note that the Waukesha engine has not yet been installed. The facility will not be subject to this regulation until that unit is operational.
NESHAP 40 CFR 61 Subpart A	General Provisions			~	This regulation is not applicable because no other 40 CFR Part 61 subparts apply (see §61.01(c)).
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)			¥	This regulation is not applicable because none of the listed equipment at the facility is in VHAP service. The provisions of this subpart apply to each of the following sources that are intended to operate in volatile hazardous air pollutant (VHAP) service: pumps, compressors, pressure relief devices, sampling connection systems, open-ended valves or lines, valves, connectors, surge control vessels, bottoms receivers, and control devices or systems required by this subpart (see §61.240(a)). VHAP service means a piece of equipment either contains or contacts a fluid (liquid or gas) that is at least 10 percent by weight of VHAP. VHAP means a substance regulated under this subpart for which a standard for equipment leaks of the substance has been promulgated (see §61.241).
MACT 40 CFR 63, Subpart A	General Provisions		2 & 3		This regulation is applicable because 40 CFR 63 Subpart ZZZZ applies (see §63.1(b)).
MACT 40 CFR 63.760 Subpart HH	National Emission Standards for Hazardous Air Pollutants For Oil and Natural Gas Production Facilities			~	This regulation is not applicable because the facility is not equipped with affected equipment. The facility is an area HAP source. Note that since it is a production field facility (located prior to the point of custody transfer), only HAP emissions from glycol dehydration units and storage vessels are aggregated for a major source determination. Storage vessels include crude oil tanks, condensate tanks, intermediate hydrocarbon liquid tanks, and produced water tanks (see §63.761). At area HAP facilities, the regulation is only applicable to dehydrators (see §63.760(b)(2)).

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Does Not Apply	JUSTIFICATION:
MACT 40 CFR 63, Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities			~	This regulation is not applicable because the facility is not a natural gas transmission and storage facility as defined by the subpart. A compressor station that transports natural gas prior to the point of custody transfer or to a natural gas processing plant (if present) are not considered a part of the natural gas transmission and storage source category (see §63.1270(a)).
MACT 40 CFR 63 Subpart YYYY	National Emissions Standards for Hazardous Air Pollutants for Stationary Combustion Turbines			~	This regulation is not applicable, as the facility is an area HAP source (see §63.6080).
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)		2 & 3		This regulation is applicable because the facility is equipped with affected sources. The station is an area HAP source as defined by the subpart. For production field facilities, only HAP emissions from engines, turbines, dehydrators, and storage vessels with the potential for flash emissions are aggregated for the HAP major source determination (see §63.6675). Unit 2 is a 4-stroke, lean burn (4SLB) spark ignition (SI) RICE with a site rating of more than 500 hp, and was constructed prior to December 19, 2002. Unit 3 is an emergency generator as defined by the Subpart.
NESHAP 40 CFR 64	Compliance Assurance Monitoring			~	This regulation is not applicable because no equipment at the facility requires a control device to achieve compliance with emission limits or standards where pre control emissions equal or exceed the major source threshold (100 tons per year). (see §64.2(a)).
NESHAP 40 CFR 68	Chemical Accident Prevention			~	This regulation is not applicable because the facility does not store any of the identified toxic and flammable substances in quantities exceeding the applicability thresholds (see §68.10(a), §68.115(a), and §68.130 Tables 1-4).
Title V – 40 CFR 70	State Operating Permit Programs			~	This regulation is not applicable because the facility is located within the exterior boundaries of the Jicarilla Apache Indian Reservation, and therefore not within the jurisdiction of the State of New Mexico Environment Department.
Title V – 40 CFR 71	Federal Operating Permit Programs	~			This regulation is applicable because the facility is located within the exterior boundaries of the Jicarilla Apache Indian Reservation.
Title IV – Acid Rain 40 CFR 72	Acid Rain			~	This regulation is not applicable because the facility does not operate a source subject to Title IV of the Clean Air Act (CAA).
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions			~	This regulation is not applicable because the facility does not operate a source subject to Title IV of the Clean Air Act (CAA).
Title IV – Acid Rain 40 CFR 76	Acid Rain Nitrogen Oxides Emission Reduction			~	This regulation is not applicable to the facility because it does not operate a source subject to Title IV of the Clean Air Act (CAA).

FEDERAL REGU- LATIONS CITATION	Title	Applies to Entire Facility	Applies to Unit No(s).	Does Not Apply	JUSTIFICATION:
	Program				
Title VI – 40 CFR 82	Protection of Stratospheric Ozone			×	This regulation is not applicable to the facility because it does not produce, manufacture, transform, destroy, import, or export ozone-depleting substances; does not maintain or service motor vehicle air conditioning units or refrigeration equipment; and does not sell, distribute, or offer for sale or distribution any product that contains ozone-depleting substances.